Identification of a Kavain Analog with Efficient Anti-inflammatory Effects

Olivier Huck, Université de Strasbourg
Xiaxian Han, New York Medical College
Hannah Mulhall, New York Medical College
Iryna Gumenchuk, New York Medical College
Bin Cai, Boston University
James Panek, Boston University
Radha Iyer, New York Medical College
Salomon Amar, New York Medical College

Abstract

© 2019, The Author(s). Kavain, a compound derived from Piper methysticum, has demonstrated anti-inflammatory properties. To optimize its drug properties, identification and development of new kavain-derived compounds was undertaken. A focused library of analogs was synthesized and their effects on Porphyromonas gingivalis (P. gingivalis) elicited inflammation were evaluated in vitro and in vivo. The library contained cyclohexenones (5,5-dimethyl substituted cyclohexenones) substituted with a benzoate derivative at the 3-position of the cyclohexanone. The most promising analog identifed was a methylated derivative of kavain, Kava-205Me (5,5-dimethyl-3-oxocyclohex-1-en-1-yl 4-methylbenzoate.) In an in vitro assay of anti-inflammatory effects, murine macrophages (BMM) and THP-1 cells were infected with P. gingivalis (MOI = 20:1) and a panel of cytokines were measured. Both cell types treated with Kava-205Me (10 to 200 μg/ml) showed significantly and dose-dependently reduced TNF-α secretion induced by P. gingivalis. In BMM, Kava-205Me also reduced secretion of other cytokines involved in the early phase of inflammation, including IL-12, eotaxin, RANTES, IL-10 and interferon-γ (p < 0.05). In vivo, in an acute model of P. gingivalis-induced calvarial destruction, administration of Kava-205Me significantly improved the rate of healing associated with reduced soft tissue inflammation and osteoclast activation. In an infective arthritis murine model induced by injection of collagen-antibody (ArthriomAb) + P. gingivalis, administration of Kava-205Me was able to reduce efficiently paw swelling and joint destruction. These results highlight the strong anti-inflammatory properties of Kava-205Me and strengthen the interest of testing such compounds in the management of P. gingivalis elicited inflammation, especially in the management of periodontitis.