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Abstract 

Background: To investigate the effects of 17β-Estradiol across phases of menstrual cycle on the 

laxness of the anterior cruciate ligament (ACL) and the neuromuscular control around the knee 

joint in female runners. 

Methods: Twelve healthy female runners, who reported normal menstrual cycles for the 

previous 6 months were tested twice across one complete menstrual cycle for serum levels of 

17β Estradiol (E), and knee joint laxity (KJL). Electromyographic (EMG) activity of the 

quadriceps and hamstrings muscles was also recorded during running on a treadmill. The 

changes in the EMG activity, KJL, and hormonal concentrations were recorded for each subject 

during the follicular and the ovulatory phases across the menstrual cycle.  

Results: An observed increased in KJL in response to peak E during the ovulatory phase, was 

associated with increased preactivity of the hamstring muscle before foot impact (p < 0.001). A 

consistent pattern was also observed in the firing of the quadriceps muscle recruitment pattern 

throughout the follicular phase associated with decreased hamstring recruitment pattern during 

weight acceptance phase of running (p = 0.02).  Additionally, low ratio of medial to lateral 

quadriceps recruitment was associated with a significant reduction of the quadriceps to hamstring 

cocontraction ratio during the follicular phase.   

Conclusions: Changes in KJL during the menstrual cycle in response to 17β-Estradiol 

fluctuations changes the neuromuscular control around the knee during running. Female runners 

utilize different neuromuscular control strategies during different phases of the menstrual cycle 

which may contribute to increase ACL injury risk. 

Keywords: 17β-Estradiol, ACL injury; knee joint laxity (KJL); EMG; neuromuscular control. 
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Abbreviation 

E 17β-Estradiol 

ACL Anterior cruciate ligament 

CNS Central nervous system 

EMG Electromyography 

H/Q Hamstring quadriceps ratio                  

IEMG   Integrated Electromyography 

KJL Knee joint laxity 

LH Lateral Hamstring                                 

MVC Maximum voluntary contraction          

MH Medial Hamstring 

ML Medial to lateral  

OC Oral contraceptive                                

PA Preactivation   

PO   Push off                                                 

QH Quadriceps hamstring  

VL Vastus lateralis                                     

VM Vastus medialis                                    

WA Weight acceptance                                
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17β-Estradiol Induced Effects on ACL Laxness and Neuromuscular 

Activation Patterns in Female Runners 

Introduction  

A female athlete’s increased risk for non-contact anterior cruciate ligament (ACL) injury 

has been well documented 1,2. Women are two to eight times more likely to injure their ACL 

when compared to men in comparable sporting activities 3. The discrepancy in ACL injury risk 

between sexes has been attributed to multiple factors including differences in anatomical, 

hormonal, biomechanical, and neuromuscular characteristics 2. 

1.1. Hormone effects on injury risk 

The normal menstrual cycle produces low serum levels of estrogen and progesterone in the early 

follicular phase (day 1–6), estrogen is elevated in the late follicular phase (day 7–14), and 

progesterone is elevated during the luteal phase (day 15–28) while estrogen remains elevated and 

slowly returns to baseline levels 4,5. The link between ACL injury and fluctuations of the ovarian 

sex hormones during the female menstrual cycle is controversial. Some investigators have 

reported an increase in ACL injuries in the late follicular phase 3,6,7. Other investigators have 

reported similar phenomena during the luteal phase 6,8 and during the early follicular phase 9. 

These contradictory results fail to explain the role of sex hormones in ACL injury risk to one 

phase of the menstrual cycle. 
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1.2. Hormone effects on the ACL 

Ovarian sex hormone fluctuations have been associated with tissue alterations and an 

increased incidence of noncontact ACL injuries 7,10. Estrogen and progesterone receptors have 

been detected within the ACL 11. Several studies have demonstrated a relationship between peaks 

in estrogen serum concentration  and increased laxity in the ACL 6,9,12. This associated change in 

tissue tolerance may predispose the ACL to failure at lower tensile loads and/or alter the 

protective muscle reflex actions associated with ACL tissue receptor stimulation 13. 

1.3. Hormone effects on tissue 

The muscular system serves a protective role in limiting the external forces and moments 

created through the knee joints motions that ultimately result in tension loading of the ACL. 

Estrogen alpha and beta receptors have been reported in skeletal muscle thereby providing a 

plausible tissue-based mechanism for altering neuromuscular control and myofascial force 

transmission pathways during the menstrual cycle 14-16.  In addition, research has not fully 

described the influence of sex hormone receptors in skeletal muscle on tissue mechanisms that 

can alter neuromuscular control. However, estrogen both directly and indirectly affects the 

female neuromuscular system 17. Sarwar & colleagues reported quadriceps strength increases and 

a significant slowing of muscle relaxation occurs during the ovulatory phase of the menstrual 

cycle 18. Serum estrogen concentrations fluctuate radically throughout the cycle and estrogen has 

measurable effects on muscle function and tendon and ligament strength 17,19. These data indicate 

that estrogen may have effects on neuromuscular function which may facilitate the potential for 

neuromuscular imbalances to develop in female athletes. 

1.4. Hormonal effect on the central nervous system  
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Estrogen also has effects on the central nervous system including the higher motor 

centers, where it binds to membrane-bound receptors and influences transmitter systems in the 

brain 20. Hence, during the menstrual cycle as the endogenous levels of estrogen undergo 

dynamic regulation; it stands to reason that their effect (s) on the CNS and thus neuromuscular 

control will also change 21,22.  

1.5 Hormonal effects on neuromuscular control 

 Female athletes display different neuromuscular strategies from male athletes 23. These 

sex differences in muscle recruitment and timing of muscle activation may affect dynamic knee 

stability. Neuromuscular preplanning allows feed forward recruitment of the musculature that 

controls knee joint positioning during landing and pivoting maneuvers 24. Imbalanced or 

ineffectively timed neuromuscular firing may lead to limb positioning during athletic maneuvers 

that puts the female ACL under increased strain and risk of injury 23. In addition, fine motor 

activity and reaction time performance have been reported to fluctuate over the course of the 

menstrual cycle 25, with more consistent performance in women using oral contraceptives (OC). 

Fride´n et al., discovered an increase in postural sway 26 during single limb stance and threshold 

for detection of passive knee motion 20 in the mid-luteal phase of the menstrual cycle. Improved 

neuromuscular coordination may occur in women taking OC with a reduced number of 

premenstrual symptoms 27.  

1.6 Neuromuscular control differences between sexes 

Men and women demonstrate similar neuromuscular control strategies during different 

athletic activities until puberty 28. A link between hormonal fluctuations and changes in 

neuromuscular control may exist, since alterations in hormonal levels constitute a primary 

change in development during and after puberty. Neuromuscular control strategies incorporated 
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during athletic movement appear to change in females after puberty, where increased knee 

valgus alignment places the ACL at greater risk for injury 28.  Several theories have been 

proposed to define the mechanisms for gender differences in ACL injury rates. These theories 

include gender differences, decreased knee ligament strength due to female sex hormones and 

neuromuscular imbalances in females 23.  

The increased incidence of serious knee injuries in female athletes is well established, 

however the underlying neuromuscular mechanisms related to the elevated ACL injury rate that 

occurs after the onset of puberty in females has not been delineated. Remarkably, an observed 

association between hormonal fluctuation and ACL injury risk indicates that there were effects 

of hormonal fluctuation (and potentially hormone stabilization) on either passive or dynamic 

knee stability 29. The effects of the menstrual cycle may be on the active restraints 

(neuromuscular in nature) rather than the passive restraints (ligament) of knee stability, because 

the menstrual cycle has effects on motor control and muscle strength 18,25.  Some reports suggest 

that more emphasis should be placed on investigation of neuromuscular factors that may be 

related to increased ACL injuries in female athletes 30.  

 Circumstantial evidence exists supporting a link between hormonal fluctuations during 

the menstrual cycle and altered neuromuscular control during selected athletic movements. To 

date, few studies have focused on changes in neuromuscular control mechanisms over the course 

of the menstrual cycle and its impact on running activity. Therefore, the purpose of the study was 

to investigate the effects of 17β-Estradiol across phases of menstrual cycle on lower extremity 

neuromuscular control patterns and ACL laxity during running. We hypothesized that lower 

extremity muscle activation patterns and laxness of the ACL will be altered during the periods of 
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high level of serum estrogen concentration compared to the early follicular phase, when estrogen 

is lowest in young healthy females’ runners. 
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1. Methods 

Subjects  

A total of 12 female runners mean (±SD) age was 25.6 (±3.7) years, with regular menstrual 

cycles volunteered to participate in the study. All subjects were currently running not more than 

20 km per week. Inclusion criteria were no history of pregnancy, no use of oral contraceptives or 

other hormone-stimulating medications for 6 months, nonsmoking behavior, two healthy knees 

with no prior history of joint injury or surgery, no medical conditions affecting the connective 

tissue, and physical activity was limited to 7 hours or less per week to reduce the likelihood of 

irregular or an ovulatory menstrual cycles that can occur with high volume or high intensity 

training. All subjects were heel strikers free of any obvious mal alignment or injuries at the time 

of data collection.  The demographic characteristics of the subjects are displayed in table 1. All 

subjects had regular menstrual cycles of a mean interval of 28 (±2) days. All participants gave 

their written informed consent prior to entering the study. All procedures and protocols were 

approved by Institutional Review Board of Loma Linda University.  

Insert Table 1 here 

1.1 Hormonal Assessment  

All subjects came to the laboratory prior to data collection for a precollection session to 

familiarize them with the study protocol. Subjects reported for neuromuscular testing and blood 

assay during each of the follicular and ovulatory phase of the menstrual cycle during a month 

period. The first measurement (follicular phase) was taken during days 1 to 2 at the beginning of 

the menstrual cycle, when estrogen levels were expected to be low 8,31. The second data 

collection coincided with ovulation and occurred 24 to 48 hours after the estrogen surge detected 

by an ovulation predictor kit (Clearblue, Procter & Gamble, OH,USA) with 99% accuracy32.    
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The subjects were given an ovulation predictor kit for home use and were instructed when to 

employ the predictor kit based on their menstrual history. For example, for a subject with an 

average 28-day menstrual cycle tested on days 13 to 15 of her cycle, ovulation testing was done 

at the same time of day. The procedure involved holding a test stick in the urine stream for 5 

seconds or collecting the urine in a paper cup and dipping the test stick into the cup for 20 

seconds. When a positive result occurred, as indicated by a smiley face on the test stick, the 

subject contacted the primary investigator to schedule data collection within the subsequent 24 

hours. 

1.2   Estradiol Serum Concentration  

Estradiol serum concentration was analyzed using a Cobas e-602 (Roche/Hitachi ,Tokyo, Japan). 

On each day of testing, 5-7 cc of venous blood were drawn to assay serum levels of estradiol. 

The blood sample was obtained from the antecubital vein with a 21 gauge needle to yield a 

minimum of 500ul of plasma which was centrifuged at 1500 g for 2 minutes and 3000 g for 4 

minutes. The centrifugation took place within the Roche MPA module. Specimens were stored in 

2-8 degrees Celsius. The methodology was competition principle and the total duration of assay 

was 18 minutes.  The mean intraassay concentration was 100.0 and the mean percentage of 

coefficient of variation (CV %) ranged from 3.4% to 3.7%. The mean (SD) of interassay was 

100.0 and the mean percentage of CV ranged from 3.8 % to 7.4%.  Assay sensitivity for the 

estradiol was 5 pg/ml.   

1.2 Electromyography  

Electromygraphy (EMG) activity was measured from the vastus medialis (VM), vastus lateralis 

(VL), medial hamstring (MH), and lateral hamstring (biceps femoris) (LH) in the thigh, of the 

dominant leg. Prior to electrode placement, the skin was lightly abraded, and cleaned with 
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alcohol. Circular pre-gelled 20 mm bipolar Ag–AgCl surface electrodes (EL503; Biopac 

Systems, Inc., Goleta, CA) were placed in parallel on the belly of each muscle in alignment with 

the direction of the muscle fibers and the distal tendon of each muscle with an inter-electrode 

distance of 20mm (according to standards provided by Seniam.org). The EMG electrodes were 

attached approximately parallel to pennation of muscle fibers half way between muscle insertion 

tendon and muscle belly to the vastus medialis and vastus lateralis. Electrode placement for the 

vastus medialis bisected the muscle anteroposteriorly, and was at a point distal from the motor 

point of the muscle half way to the insertion of the quadriceps tendon. The VL electrode location 

was centrally in a mediolateral fashion and distal from the midpoint of the belly to the tendinous 

junction. The MH electrodes were placed over the muscle belly half way between the ischial 

tuberosity and the tibial insertion point, at least 5 cm proximal to the musculotendinous junction. 

The LH electrodes were placed over the biceps femoris muscle halfway between the ischial 

tuberosity and the fibular insertion site, and a minimum of 5 cm proximal to the 

musculotendinous junction. A reference electrode for the EMG system was placed over the tibia. 

All electrodes were placed by a single experimenter to insure consistency thorough the study. 

Electrodes and telemetry amplifiers were secured to the skin using medical tape to minimize 

movement artifacts and to prevent the electrodes from losing surface contact due to sweating. 

Maximum voluntary contraction test were conducted for each subject. The MVC test for the 

vastus lateralis and vastus medialis muscles were performed while the subjects was in a sitting 

position with the knee flexed at 90. The MVC test for the biceps femoris and medial hamstring 

muscles were performed while the subject was in a prone position with the knee flexed at 30. 

During the MVC tests, the subject was instructed to perform three 5 second maximum voluntary 

isometric contractions for each selected muscle against the resistance of the same tester and was 
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given verbal encouragement whilst doing so. The middle two seconds of the MVCs of each 

contraction were analyzed. A 3 min rest period was allocated between each contraction. Surface 

EMG was recorded using Biopac Inc., Goleta, CA. Acknowledge 4.3.1. The electromyography 

was recorded using a sampling rate of 2000 Hz through a 24 bit A/D converter. The raw data 

were processed using a band-pass filter (15-150 Hz). The EMG was integrated then divided by 

the maxmuim voluntary contraction (MVC) to normalize the EMG activity of every participant. 

Muscle activities were analyzed by the method described by Besier et al 33 , in the following 

conditions: (A) the preactivation phase: 50 ms before foot landing till foot landing; (B) the 

weight acceptance and (C) the peak push-off phase (Fig.1). The EMG activity of the selected 

group of muscles were synchronized with High Frame Rate Camera (CAM-HFR-A) SVHS Sony 

video camera (Basler, Biopac Systems, Inc., Goleta, CA) to capture the running phases as series 

of videos at 100 FPS (640*480 resolution). The camera was mounted on a tripod placed 2 m 

from the treadmill and aligned so the plane of the camera was parallel to the treadmill. The 

camera was leveled using the bubble level attached to the tripod and set to the height of the 

subject knee during running.  

Insert Fig 1. here 

1.3 Assessment of knee laxity  

To quantify knee joint laxity, we utilized the KT-2000 (MEDmetric1 Corporation, San 

Diego, CA) instrumented knee arthrometer to measure anterior tibial translation (ATT) during 

the application of 133 N (30-Ib) anterior displacement force. Subjects are tested in the supine 

position in 30 degrees of knee flexion with 15 to 25 degrees of external rotation while the femur 

and tibia are supported by leg holders. The device was then placed on the anterior aspect of the 

leg and secured in place with circumferential straps. A strain gauge bridge arranged in a load cell 
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was used to measure the force necessary to generate an anterior glide of the proximal end of the 

tibia on the femoral condyles. This generated a force versus displacement curve for the anterior 

cruciate ligament. The process was accomplished by supporting both limbs with a firm, 

comfortable platform placed proximal to the popliteal space to keep the subject’s knee flexion 

angle constant for the duration of the test (fig.2). Along with this device, a foot support accessory 

supplied with the ARTHROMETER® positioned the feet symmetrically allowing the leg 

position to be optimal for the test while reducing external rotation. For the most comfortable 

position during the flexion angle test, knee flexion angle was initially at 25° and the only 

movement was the tibia in relation to the patella. A thigh strap controlled hip external rotation 

while offering support to help relax the subject. Force used for the experiment was applied at 30 

lbs (133 N). The force displacement data were plotted on an X–Y plotter. The vernier caliper was 

used to measure anterior tibial translation (ATT) on the graph. The reliability of the KT 2000 has 

been has been established by , Van Lunen et al., reported an intraclass correlation coefficient of r 

= 0.92 (p = 0.001) 34.  

Insert Fig 2. here 

Procedures 

Subjects were instructed to begin using an ovulation Predictor kit (Clearblue, Procter & Gamble, 

OH,USA) with 99% accuracy 32 on day 13 to 15 of their menstrual cycle, and were asked to 

report to the research study coordinator the day the test became positive. The day of ovulation 

was confirmed to insure an ovulatory menstrual cycle had occurred; provide a common reference 

point by which to counterbalance participants and to mark the beginning and ending of data 

collection; and to provide indirect confirmation that female subjects were not pregnant. Hormone 

assays, neuromuscular testing, and knee joint testing were performed at Loma Linda University. 
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Subjects were tested twice across one complete menstrual cycle, undergoing the same data 

collection procedures on each day of testing. Testing was performed in the morning (8:00 A.M.–

12:00 P.M.) to obtain the most stable concentrations 35 and to control for diurnal fluctuations in 

hormone levels. Within this window, every attempt was made to bring subjects in at the same 

time each day. However, some flexibility was needed to accommodate participant’s class and 

work schedules given the daily data collection requirements. Subjects were counterbalanced to 

begin and end data collection either at ovulation (ovulation kit detecting the estrogen hormone 

surge), or the onset of menses (self-report of the first day of menstrual bleeding). Although each 

subjects was familiar with treadmill running, each had adequate time to become accustomed to 

treadmill running prior to the introduction of the experimental measurments. Subjects then were 

asked to complete a standardized 6 min running session on a Zebris FDM-T instrumented 

treadmill (zebris Medical GmbH, ISny Germany) with 0 inclination at 10Km/h with heel strike 

pattern. The treadmill had an embedded pressure mat containing more than 15,000 pressure 

sensors, from which data were integrated to produce the vertical ground reaction force to 

measure the ground reaction force. Once the runners demonstrated a stable running pattern, data 

were sampled at 200 Hz for 10 seconds. Lastly the ACL laxity was measured by the KT2000.  

Data Analysis  

A power analysis was conducted using an effect size of 0.75 a probability of type I error of 0.05, 

and a power of 0.80. This analysis indicated that a sample size of 12 subjects would provide a 

statistical power of 80 (G*Power v3.0.10 free software). The data was summarized using means 

and the standard deviations of the hormonal concentration, normalized EMG, and laxness of the 

ACL during each phase. Normality of the quantitative variables was confirmed using 

Kolmogorov–Smirnov test. A Paired T test was conducted to compare the changes in mean 

http://en.wikipedia.org/wiki/Andrey_Kolmogorov
http://en.wikipedia.org/wiki/Nikolai_Smirnov_(mathematician)
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estradiol serum concentration, ACL laxity and EMG activity between follicular and ovulatory 

phase. Statistical analysis was performed using SPSS for windows version 20. The level of 

significance was set at α ≤ 0.05. 

3. Results 

The data of one subject was discarded from the analyses after examining her hormonal assays 

because of a significant deviation from the normal expected hormonal profile for enumenorrhic 

women, with hormonal profile irregularities of low estrogen level < 5Pg/ml 3. 

3.1 Hormonal Profile  

Descriptive data about the menstrual phases indicated typical values 3 including days between 

cycles (28.8±1.1) length of menstruation (6.3±1.2). Descriptive data for blood assay verified the 

menstrual cycle phases indicated that all subjects included in the statistical analysis were in the 

correct phase of the menstrual cycle.  17β estradiol serum concentration was significantly higher 

in the ovulatory compared with the follicular phase (P<0.001). The lowest estradiol 

concentration was found during menstruation (34.14 ± 15.47 pg/ml) and the highest estradiol 

concentration was found during ovulation (207.74 ± 53.42 pg/ml). Table 2 Fig.3a 

Insert Table 2 here   

Insert Fig 3a  here 

3.2 Anterior Cruciate Ligament Laxity  

Laxity of the anterior knee ligament was measured by the anterior tibial translation (ATT). There 

was significant difference in the ATT between the follicular phases and the ovulatory phase of 

the menstrual cycle (p<0.01). The greatest ATT was found during ovulation (4.18 ± 0.27) and 

the least ATT was found (5.75 ± 0.47) during follicular phase (Table 2; Fig.3b) 

Insert Fig 3 b here  

3.3 Neuromuscular Control variables  
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The results of this study demonstrate differences in muscle activation strategies during different 

phases of menstrual cycle. A summary of the activation values are presented in table 3.   

Quadriceps Muscle Activity  

The quadriceps muscle exhibited increased activity during the early follicular phase compare to 

the ovulatory phase in the precontact and weight acceptance phase of running (p= 0.02, 0.04 

respectively) (Table 3, Fig 4A). The lateral and medial quadriceps were analyzed separately. For 

the lateral quadriceps, a significant increase was observed during the follicular phase compared 

with ovulatory phase (p=0.014) (Table 3; Fig. 4B). Remarkably, females subjects demonstrated a 

significant decrease in medial to lateral quadriceps ratios during follicular phase compared to 

ovulatory phase ( p < 0.001) during weight acceptance phase (Table 3; Fig. 5). Fig. 4a shows 

typical data of increased IEMG activity of the VL and VM muscles of a single subject during the 

follicular phase and fig 4b showed the decreased activity of the two vasti during the ovulatory 

phase. As shown in the figure, the raw EMG muscle activity was greater in the follicular phase 

than the ovulatory phase. Below each raw EMG is the integrated EMG showing the same 

phenomena. 

Hamstring Muscle Activity 

The ovulatory phase altered the hamstring muscle preactivity before impact. The average peak 

hamstring activity during the precontact and weight acceptance phase was significantly increased 

during ovulation compared with the early follicular phase (Fig. 5B; Table 3). Specifically the 

medial hamstring showed increased activity before impact during the ovulatory phase compared 

to the follicular phase (p <0.001) (Fig. 5A; Table 3). The increased activity of the hamstring was 

also observed during weigh acceptance with increased EMG amplitude (p < 0.001). Moreover 
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the quadriceps hamstring cocontraction was significantly higher compared to the follicular phase 

(p<0.001) (Fig. 5C; Table 3). 

Insert Fig 4a here  

Insert Fig 4 b here  

Insert Fig 5A here  

Insert Fig 5B here  

Insert Fig 5 C here 

Insert Table 3 here 

Discussion  

The physical disability and long rehabilitation process associated with anterior cruciate 

ligament (ACL) injury can be both psychologically and financially devastating to the individual, 

ultimately resulting in a decreased quality of life. Female athletes have a higher rate of ACL 

injury than do men, and many of these injuries require extensive surgical and rehabilitative 

interventions, with a financial burden to the American healthcare system estimated to approach 

$650 million annually 16. Bearing that in mind, it is imperative to understand the mechanisms 

leading to such an injury in an effort to prevent its occurrence and its subsequent sequelae. 

Although both men and women are susceptible, the literature states that women have a 4 to 6 

fold increased incidence of ACL injury 29,36.                                                      

While the increased incidence of serious knee injuries in female athletes is well 

established, the underlying neuromuscular mechanisms related to the elevated ACL injury rate 

has yet to be delineated. Maintenance of joint congruency is important in prevention of injury. 

Both the ligamentous structures and the muscular system contribute 37 .The role of the muscular 

system is particularly important when the static restraints are jeopardized and therefore not 

providing restraint to abnormal motion within the joint. 
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Our study supports the previous studies which have reported a greater knee laxity during 

ovulation when estrogen levels are high 12,38.  Conversely, women who experienced high plasma 

concentration of estrogen experienced a marked increase in joint laxity behavior following peak 

ovulatory levels. However other studies 34,39 found that knee ligament laxity doesn’t differ by 

menstrual cycle day. Interestingly to note that in these studies, that did not identify changes in 

knee laxity across select days of the menstrual cycle. The average estradiol levels were near the 

upper limits of normal ranges at menses (56 and 73 pg/mL) and considerably below the normal 

ranges postovulation (137 and 120 pg/mL) using similar hormone assay.  

The results of our study reveal differences in muscle activation strategies during different 

phases of the menstrual cycle. Our results showed that women place greater reliance on their 

quadriceps during the follicular phase to modulate the torsional joint stiffness about the knee 

joint during running. The increased quadriceps activity observed during the follicular phase was 

associated with decreased hamstrings activity. We speculate that the observed differences in 

neuromuscular recruitment strategies may have implications for the greater incidence of non-

contact ACL injures observed in women.  

A consequence of differences in neuromuscular activation patterns might be injury 

susceptibility. Markolf & colleagues, found that muscle activation about the knee increased 

valgus stability threefold, highlighting the influence of the muscular system on knee stability 40. 

Previous investigations of neuromuscular control 41,42; have not considered muscle activation 

patterns during running. The present study discovered that the quadriceps and hamstring 

cocontraction ratios decreased during the early follicular phase compared to ovulatory phase. 

This suggests a different co-contraction (onset timing of agonist/antagonist around a joint) 

mechanism between these muscles. This alteration in neuromuscular control may explain the 
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non-significant knee valgus variable since the quadriceps and hamstring work together to control 

torsional motions of the femur and tibia that may contribute to valgus alignment of the knee 43. 

This co-contractive mechanism suggests a different neuromuscular control pattern when estrogen 

levels are low; however, more investigation is necessary. 

 

While we are unable to find another published study that evaluated neuromuscular 

activation patterns in healthy females runners with non-pathological knee elasticity, our findings 

are surprisingly consistent with those demonstrated in ACL deficient individuals. Alkjaer & 

colleagues, reported a marked increase in hamstring coactivation towards more extended joint 

positions in ACL deficient subjects (Alkjaer et al., 2012). Notably, this progressive rise in 

coactivation may reflect a compensatory strategy to provide stability to the knee joint in the 

anterior–posterior plane during knee extension. In agreement, our investigation showed that 

participants with increased knee joint laxity during ovulation demonstrated increased levels of 

muscle preactivity in the hamstring muscles before impact as well as during weight acceptance 

phase.  Coactivation of the hamstring muscles during dynamic knee extension may compensate 

for increased knee joint laxity in anterior cruciate ligament. Increased coactivation of the 

hamstring muscles has been suggested to provide a compensatory strategy to reduce Anterior 

tibial translation (ATT) in functional conditions that include knee extension 44 45. Several studies 

have shown that the hamstring muscles are active during submaximal and maximal quadriceps 

agonist contraction 46 and that coactivation of the antagonist hamstring muscles during knee 

extension effectively reduces the amount of ATT 45,47. 

The primary purpose of the current study was to investigate whether estradiol fluctuation 

during the menstrual cycle has an influence on the neuromuscular control around knee joint 
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mechanics during running. Previous studies investigating the relationship between knee joint 

mechanics and the menstrual cycle found significant changes in biomechanical 1 or 

neuromuscular 12 characteristics corresponding to changes in hormonal levels during the 

menstrual cycle. The present study also found significant changes in the neuromuscular control 

around knee joint between the different phases of the menstrual cycle. As a result, ACL injury in 

female athletes may not be explained simply by the hormonal cycle but is likely influenced by a 

more complicated and indirect injury mechanism incorporating hormonal fluctuations and 

dynamic knee joint function that may be individual specific. 

Although, we are currently unaware of any other study in the literature that investigated 

the neuromuscular control variables presented here in females’ runners. Previous studies had 

evaluated gender differences in neuromuscular control. Our study showed that females’ runners 

use a different neuromuscular strategy during different phases of menstrual cycle. Subjects 

demonstrated a decreased ratio of medial quadriceps to lateral quadriceps recruitment. A 

preactivation difference did exist for the lateral quadriceps between the follicular and ovulatory 

phase. The decreased ratio of the medial quadriceps musculature recruitment may be related to 

decreased control of coronal plane forces at the knee 48.  

In addition to low ratio of medial to lateral quadriceps recruitment combined with 

increased lateral hamstring firing may compress the lateral joint, open the medial joint and 

increase and increase shear force, which directly loads ACL. This disproportional recruitment of 

the quadriceps musculature increases anterior shear force at the low knee flexion angles that 

occur during landing. The quadriceps, through the anterior pull of the patellar tendon on the tibia, 

contributes to ACL loading when knee flexion is less than 30 degrees 48. Of interest is that our 

participants demonstrated increased activity of quadriceps muscles during the follicular phase 
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compared to the ovulatory phase, which is thought to maximize axial compression, joint 

congruency and frictional forces to effectively limit joint displacement.  Muscular co-contraction 

compresses the joint, due in part to the concavity of the medial tibial plateau, which may protect 

the ACL against anterior drawer. However, Zazulak & colleagues reported greater peak 

quadriceps activity in female than male subjects 49. Decreased balance in strength and 

recruitment of the flexor relative to the extensor musculature may put the ACL at greater risk 50. 

Adequate cocontraction of the knee flexors is needed to balance contraction of the quadriceps, 

compress the joint, and control high knee extension and abduction torques 50. Appropriate 

hamstrings recruitment may prevent the critical loading necessary to rupture the ACL during 

maneuvers that place the athlete at risk of an injury. Female subjects may display a longer 

latency period that is, electromechanical delay between preparatory and reactive muscle 

activation. Preparatory muscle activity can stiffen joints before unexpected perturbations. 

Neuromuscular training that reproduces loads similar to those encountered during competitive 

sports may assist in the development of both feed forward and reactive muscle activation 

strategies that protect the knee joint from excessive load 51-53 . 

Our findings support the previous studies which have reported a decreased 

neuromuscular response and/or control around the time of menstruation 12,54. Despite these 

observations, our findings of decreased neuromuscular control around the knee which may be a 

potential mechanism for increased risk of injury at this stage of the cycle, there is no consensus 

as to whether injury risk is also elevated during menstruation 29. These conflicting results could 

be due to the difficulty in performing a prospective study to assess injury risk, with the majority 

of protocols consisting of retrospective assessment 29,55. These results can also be confounded by 

participation levels during each phase of the cycle, because women who do not take the oral 
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contraceptive pills are significantly less inclined to participate in physical activity during 

menstruation 56. Taken together, these results suggest that during menstruation the performance 

of the neuromuscular system is compromised, which may limit both participation and intensity of 

activity in sporting events and therefor counterbalance the increased risk of injury due to an 

impaired motor control strategy.  

Decreased neuromuscular control of the lower extremity during menstruation may 

increase the potential for valgus lower extremity position and increased ACL injury risk. 

Identification of these neuromuscular imbalances has potential for both screening of high risk 

athletes and targeting interventions to specific deficits. Dynamic neuromuscular training can 

increase active knee stabilization and decrease the incidence of ACL injury in the female athletic 

population 57,58. Training may facilitate neuromuscular adaptations that provide increased joint 

stabilization and muscular preactivation and reactive patterns that protect the female athlete’s 

ACL from increased loading. Neuromuscular training will help female athletes adopt muscular 

recruitment strategies that decrease joint motion and protect the athletes ACL from the high 

impulse loading while also improving their measures of performance. More investigation is 

necessary to determine if the neuromuscular control changes occur due to alterations in force 

transmission properties of passive tissues, levels of feedback from ligamentous and dynamic 

tissues, levels of feedback from ligamentous and dynamic tissues or centrally driven feed 

forward mechanism. 

Utilization of a relatively simple task (running) may not adequately stress the 

neuromuscular system at the level of athletic population, thus limiting the generality of the 

results to athletes. Also, the current protocol didn’t measure the muscle activation at high speeds 

which may limit the applicability of our findings to conditions of higher speed joint loading.  In 
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addition, we examined only the quadriceps and hamstring and we didn’t measure other lower 

extremity musculature that may influence knee joint mechanics. Also, the absence of randomized 

order of measurement is a threat to the validity of the study.  

Conclusions  

This study is the first to examine the influence of the menstrual cycle on knee joint laxity 

and neuromuscular control around the knee during constant velocity running. Our results 

suggested that decreased knee joint laxity during the menstrual cycle leads to decreased 

neuromuscular control during running. A consistent pattern was observed in the firing of the 

quadriceps muscle recruitment pattern throughout the menstrual cycles associated with 

unbalanced hamstring recruitment. In addition to low ratio of medial to lateral quadriceps 

recruitment combined with increased lateral hamstring firing which may compress the lateral 

joint, open the medial joint and increase shear force, which directly loads ACL. This 

disproportional recruitment of the vastus musculature increases anterior shear force at the low 

knee flexion angles which may increase the potential for valgus lower extremity position and 

possibly increased risk of ACL injury. 
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