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RESEARCH ARTICLE

Measurement of the Absolute Magnitude
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Membrane Potential in Primary and Clonal
Pancreatic Beta-Cells
Akos A. Gerencser1,2*, Shona A. Mookerjee1,3, Martin Jastroch1¤, Martin D. Brand1

1 Buck Institute for Research on Aging, Novato, California, United States of America, 2 Image Analyst
Software, Novato, California, United States of America, 3 Touro University California College of Pharmacy,
Vallejo, California, United States of America

¤ Current address: Helmholtz Diabetes Center & German Diabetes Center (DZD) Helmholtz Zentrum
München, Neuherberg, Germany
* agerencser@buckinstitute.org

Abstract
The aim of this study was to simplify, improve and validate quantitative measurement of the

mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously

introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse

imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a

bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glu-

cose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular

energy production and demand, therefore precise assay of its magnitude is a valuable tool

to study how these processes interplay in insulin secretion. Dispersed islet cell cultures

allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and

ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The

hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolari-

zation was biphasic. The biphasic response of ΔψP was associated with a larger hyperpo-

larization of ΔψM than the monophasic response. Analysis of the relationships between

ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heteroge-

neously, driven by variable activation of energy metabolism. Sensitivity analysis of the cali-

bration was consistent with β-cells having substantial cell-to-cell variations in amounts of

mitochondria, and this was predicted not to impair the accuracy of determinations of relative

changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an

alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited

β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading

conclusions.
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Introduction
In healthy pancreatic β-cells insulin is secreted when elevated glucose availability increases
mitochondrial energy metabolism, hyperpolarizing the mitochondrial membrane potential
(ΔψM), raising the cytoplasmic ATP/ADP ratio, closing ATP-sensitive K+-channels (KATP),
depolarizing the plasma membrane potential (ΔψP), activating Ca2+ entry and triggering exo-
cytosis. This is the canonical or triggering pathway of glucose-stimulated insulin secretion
(GSIS). ΔψM is the major component of the proton motive force, which is an important deter-
minant of the maximum rate of ATP synthesis or maximal ATP/ADP ratio achievable by oxi-
dative phosphorylation. Thus, ΔψM is a key regulator of GSIS and a central intermediate
between cellular energy supply and energy demand. The canonical pathway of GSIS does not
explain subtleties of insulin secretion, and therefore secondary amplification or metabolic cou-
pling factors[1] of GSIS are targets of intense research. However, most secondary coupling fac-
tors may feedback-regulate energy metabolism, and this property is currently seriously
overlooked, therefore the regulation of ΔψM in GSIS requires further scrutiny. This paper
describes the β-cell specific optimization and application of the absolute and unbiased ΔψM
assay technology that will enable these questions to be addressed in the future.

Measurement of the magnitude of ΔψM has several important applications in β-cell and dia-
betes research. Firstly, semi-quantitative relationships between mitochondrial bioenergetics and
insulin secretion are seemingly well established [2–8], but have been challenged [9–14]. However,
only a handful of reports have performed consistent substrate titrations and compared bioener-
getic and secretory parameters in a clonal insulinoma line [5], in intact rodent islets [8] and in
dispersed rodent islets [15]. These studies showed that ‘energization’ of mitochondria is the best
predictor of insulin secretion. Nonetheless, this idea has been largely abandoned in favor of puta-
tive downstreammetabolic coupling factors [1]. However, manipulations of metabolic pathways
to demonstrate such coupling factors have rarely been controlled for secondary bioenergetic
effects, and if they have, they have had only limited sensitivity [13,16,17].

Secondly, comparisons of evoked changes in ΔψM using the typical semi-quantitative appli-
cation of rhodamine 123 assume identical mitochondrial volume densities and baseline values
of ΔψM. This makes it invalid to compare different individuals or different genetic models that
may violate these assumptions. In our hands the absolute potentiometric technique allowed
comparison of normal and type 2 diabetic human β-cells, leading to the identification of an
imbalance between ATP turnover and substrate oxidation as a form of bioenergetic dysfunc-
tion in diabetes [18].

Thirdly, β-cells in islets [19] and in isolation [20] respond heterogeneously to rising [glu-
cose], and this likely has physiological significance [19]. A technology that accurately measures
ΔψM in single cells will allow examination of this property in various β-cell models. Data pre-
sented here indicates that cell-to-cell heterogeneity is largely driven by variable activation of
energy metabolism.

To address the shortcomings of previously available ΔψM assays, particularly the confounding
effects of mitochondrial volume density and differences in ΔψP between samples, we have devel-
oped a method for micro-scale single-cell analysis of ΔψM. This technology measures the absolute
value of ΔψMunbiased by ΔψP. To this end the fluorescence signal of a cationic potentiometric
dye (TMRM; tetramethylrhodamine methyl ester) is corrected using the fluorescence of an
anionic, bis-oxonol type fluorescent ΔψP indicator (PMPI) [21]. In addition, the assay accounts
for effects of cell size, residual fluorescence background, autofluorescence, mitochondrial volume
density, probe binding to mitochondrial membranes, and ultrastructural differences, therefore it
allows accurate comparison of different samples. Both ΔψM and ΔψP are calibrated to millivolt
values from a single fluorescence time-lapse recording of single cells or populations of cells.
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Fluorescence intensity changes of redistribution-type potentiometric probes reflect poten-
tials distorted in time by their slow and potential-dependent diffusion across the plasma mem-
brane. The calibration algorithm models this effect, and back-calculates the time course of
‘undistorted’ potentials using a set of biophysical constants that describe the movement of
probes across membranes. We have previously determined and consolidated these values using
electrophysiology in cortical neurons [21]. We assume that these values describing membrane
permeation are constant properties of the probes, independent of the biological specimen. In
contrast, the calculation of each potential requires a cell-specific rate constant (k) and a fluores-
cence background (fx) that are calculated for each fluorescence trace. Furthermore, determina-
tion of ΔψM requires knowledge of the mitochondria:cell volume fraction (VF) and the binding
of the probe to membranes (apparent activity coefficient ratio; aR’, which expresses ultrastruc-
tural parameters, differences in chemical activity between the mitochondrial matrix and the
cytosol, and optical dilution). The latter parameters (VF and aR’) are cell-type specific and may
be altered by disease or chronic manipulation of the specimen. They can be determined in cell
populations and we suggest that this is done for each distinct specimen.

The aim of this study was to simplify, improve and validate the absolute measurement of
ΔψM in pancreatic β-cells. Here we describe improvements of the established potentiometric
method [21] and the optimization of the assay for single β-cells in dispersed islet cultures from
rats and humans. We apply this method to demonstrate the bioenergetic heterogeneity of pri-
mary rat β-cells. Finally, we find that the semi-quantitative method of measuring ΔψM using
the quench-mode rhodamine 123 signal relies on assumptions that are not met in glucose- and
oligomycin-treated insulinoma cells, resulting in misleading conclusions.

Materials and Methods

Materials
The ΔψP indicator (PMPI; #R8042 FLIPR Membrane Potential Assay Explorer Kit) was from
Molecular Devices (Sunnyvale, CA); Accutase, Geltrex, tetramethylrhodamine methyl ester
(TMRM) and other fluorescence probes were from Life Technologies (Carlsbad, CA); zosuqui-
dar was from MedKoo Biosciences (Chapel Hill, NC), and other fine chemicals were from
Sigma-Aldrich (St. Louis, MO) or Santa Cruz Biotechnology (Dallas, TX), unless otherwise
noted.

Rat Islet preparation, dispersion and immunocytochemistry
Rat islets from male Wistar rats were prepared according to [22] and [23] with modifications,
in accordance with IACUC standards under a protocol approved by the Buck Institute Animal
Care and Use Committee (IACUC Protocol Number 10080). Briefly, the common bile duct of
CO2-euthanized rats was injected with collagenase (type P, Roche; 1 mg/ml in Ca2+-free
HEPES-buffered EBSS) and pancreata were digested for 20 min at 37°C. The tissue digest was
triturated by a 21G needle and purified by discontinuous gradient centrifugation through His-
topaque 1119, 1077 and EBSS containing HEPES (10 mM) and BSA (1 w/v %). Islets were cul-
tured in RPMI 1640 medium supplemented with heat inactivated fetal bovine serum (10 v/v
%), HEPES (10 mM), 100 units/ml penicillin and 100 μg/ml streptomycin, nonessential amino
acids, pyruvate (1 mM), glutamine (2 mM) and β-mercaptoethanol (55 μM) in suspension
flasks for 48 h. Islet cells were dispersed using Accutase, (1 ml, for 10 min at 37°C), triturated
with a 1 ml pipette tip and plated at ~5×103 cells per well in the presence of 5 v/v % Geltrex in
the above medium into coverglass-bottomed, half-area 96-well microplates previously coated
overnight with polyethyleneimine (1:15000 w/v %) and attached by centrifugation at 500 g for
5 min.

Mitochondrial Membrane Potential in Pancreatic Beta-Cells
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Experiments were performed on the 3rd or 4th day of dispersed culture in a non-fluorescent,
custom-modified RPMI 1640 medium (Mediatech, Manassas, VA), devoid of phenol red, ribo-
flavin and folic acid, with 5 mM NaHCO3 (to partially accommodate working in room air).
Phosphate was lowered to enable the use of 1.5 mM CaCl2 and 1 mMMgCl2 and the medium
was buffered with 20 mM TES (N-Tris-(hydroxymethyl)-methyl-2-amino-ethanesulphonic
acid). Basal incubation medium contained 3 mM glucose and 2 mM glutamine. β-Cells were
identified by post-hoc immunocytochemistry using guinea pig polyclonal anti-insulin primary
(AR029-5R 1:5; Biogenex, San Ramon, CA) and anti-guinea pig IgG–Alexa 555 (1:500; Life
Technologies) secondary antibodies.

Human islets
Human islets (Prodo Laboratories, Irvine, CA) were cultured for 1–4 d in PIM medium
(Prodo) supplemented with human serum, glutamine, and glutathione according to the suppli-
er’s recommendations, plus 100 units/ml penicillin and 100 μg/ml streptomycin. Data were
pooled from work on β-cells from four non-diabetic donors (37 yo male, BMI 26.3, Hb1Ac
5.1%; 38 yo female, BMI 30.6, HbA1c 3.5%; 33 yo male, BMI 31.4, HbA1c 5.6%; 59 yo female,
BMI 31.2, HbA1c 5.3% [20]). Islet cells were dispersed in ~500 islet batches and plated at
~5×103 cells per well as described above for rat β-cells.

Insulinoma cell lines
INS-1E [24] and INS-1 832/13 cells [25] were cultured in RPMI 1640 medium containing glu-
tamine (2 mM), pyruvate (1 mM), β-mercaptoethanol (55 μM), HEPES (10 mM), and fetal
bovine serum (10 v/v %). For the microplate-based application of the potentiometric tech-
nique, an INS-1 832/13 line stably transfected with non-targeted pSilencer 4.1 CMV-puro vec-
tor was used, and 2 μg/mL puromycin was added during cell culturing and plating. Insulinoma
cells were plated at 2×104 cells per well on 8-well LabTek chambered coverglasses for micros-
copy; for the microplate assay, cells were plated at 4×104 cells per well into 96-well plates
(Corning 3340) 48–72 h prior to the experiment.

Measurement of mitochondrial density and probe binding
Mitochondria:cell volume fractions (VF) were determined as described [21], with modifica-
tions. Briefly, cultured primary islet cells or INS-1 832/13 cells were loaded with MitoTracker
Red CMXRos (75 nM) and calcein-AM (0.75 μM) for 30 min at 37°C in non-fluorescent RPMI
medium, and imaged on a Zeiss LSM780 laser scanning confocal microscope using a Plan-
Apochromat 63×/1.4 oil lens. 1024×1024 pixel single planes were recorded at 44 nm pixel size
at 1 Airy unit pinhole at high quality. Calcein and MitoTracker Red were simultaneously
excited at 488 nm and 561 nm and emissions were detected at 493–556 nm and 566–690 nm,
respectively. The binding of TMRM to mitochondrial membranes at zero ΔψM (aR’, see Intro-
duction) was measured using the same optical setting, as previously described [21]. For dis-
persed islet cultures only cells with post-hoc insulin positivity were analyzed. Recordings were
analyzed using the “Mitochondria:cell volume fractionator (basic with post-hoc staining)” and
“Mitochondrial membrane potential assay—measurement of the apparent activity coefficient
ratio”image analysis pipelines in Image Analyst MKII (Image Analyst Software, Novato, CA).

Fluorescence microscopic assay of ΔψP and ΔψM
Time-lapse recording was performed on a Nikon Ti-Eclipse Perfect Focus System fully motor-
ized wide-field fluorescence microscope, equipped with a Cascade 512B camera (Photometrics,
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Tucson, AZ) and S-Fluor 20× air lens, a Lambda LB-LS17 Xe-arc light source, 10–3 excitation
and emission filter wheels (Sutter Instruments, Novato, CA) and an MS-2000 linear encoded
motorized stage (ASI; Eugene, OR), controlled by NIS Elements 4.20 (Nikon, Melville, NY).
Experiments were performed at 37°C in air. To ensure that all calibrant media had the same
probe concentrations, the potentiometric medium (PM) was made from a 2x Na-free stock of
the non-fluorescent RPMI medium described above. TMRM (7.5 nM final), PMPI (1:200
final), tetraphenylborate (TPB; 1 μM final; to accelerate probe distribution) and zosuquidar
(1 μM final; to inhibit p-glycoprotein mediated probe efflux [26]) were added to this (resulting
in 2×PM) and diluted to final volume using 240 mMNaCl (resulting in PM) or alternatively
KCl solutions (PMK).

Cell culture microplates were incubated in PM for 2–3 h then imaged in fresh PM. In each
session, twelve view fields were cyclically imaged in six wells at 30–40 s intervals, using the fol-
lowing filter sets from Semrock, Rochester, NY, given as excitation–dichroic beamsplitter–
emission in nm/bandwidth, for TMRM: 580/14–594–641/75 (150 ms exposure time) and for
PMPI: 500/24–520–542/27 (75 ms). Mean fluorescence intensities were determined over man-
ually drawn regions of interests (ROIs) in recordings that were background subtracted, aligned
and spectrally unmixed using the “Prepare two channel time lapse for intensity analysis” stan-
dard pipeline in Image Analyst MKII. The readout was gated to be β-cell-specific using post-
hoc immunocytochemistry. To this end, during image acquisition an origin was arbitrarily
chosen and imaged in the plate during live-cell recording (e.g. an edge of a well). After immu-
nostaining, this point was located using the “Live comparisons” feature of the NIS Elements
software, stored coordinates were offset, and the same view fields were imaged for immunoflu-
orescence. During image analysis, the live-cell time lapse maximum intensity projection PMPI
image and the immunofluorescence images were registered, then the immunofluorescence
micrograph was used as an aid for manual drawing of ROIs using the projection image as a
template. ROIs were drawn sufficiently large to contain single or groups of cells even if they
moved during the experiment. Previously we have shown that the way of ROI drawing (e.g. the
amount of background included) does not affect the calibration [21]. To determine the magni-
tude of ΔψM and ΔψP at baseline and for their time course afterwards the “Membrane Poten-
tial Calibration Wizard” in Image Analyst MKII was used. Calibration constants (see
Introduction) were set as given in the text. Constants not specified here were assigned previ-
ously determined values [21].

Fluorescence microscopy of synaptopHluorin
To estimate possible optical artefacts associated with liquid handling or glucose-stimulation of
β-cells, human β-cells were infected with superecliptic synaptopHluorin lentivirus [18], and
pH-insensitive fluorescence was recorded using wide-field microscopy as above described with
a 390/40–495–520/35 filter set.

Fluorescence microscopy of rhodamine 123
Insulinoma cultures were incubated with 10 μg/ml rhodamine 123 for 30 min in a simple assay
medium comprising of (in mM) 120 NaCl, 3.5 KCl, 1.3 CaCl2, 1 MgCl2, 0.4 KH2PO4, 5
NaHCO3, 1.2 Na2SO4, 20 TES, 2 glucose, 2 glutamine at pH7.4 at 37°C. Then, time lapse
recording was performed in the absence of probe using a 60× Plan Apo VC NA1.4 oil immer-
sion lens and 1.5× zoom resulting in 0.18 μm/pixel resolution using the wide-field fluorescence
microcopy setup described above. To measure mitochondrial fluorescence, high pass filtering
was performed using the “original X-rhod-1 mito filter.flt” in Image Analyst MKII [27].

Mitochondrial Membrane Potential in Pancreatic Beta-Cells
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Plate-reader assay of ΔψP and ΔψM
The absolute magnitude of ΔψP and ΔψM in INS-1 832/13 cells were measured in a Pherastar
FS (BMG) fluorescence plate reader capable of simultaneous dual emission detection, z-focus-
ing and orbital averaging, equipped with a customized filter set (Semrock) comprising of a 503/
572 nm dual bandpass exciter, a 444/520/590 nm multiedge excitation beamsplitter, a 562 nm
emission beamsplitter, a 537/26 emission filter for PMPI and a 641/75 emission filter for
TMRM. Assays were performed in a simple PM with a composition based on to the above sim-
ple assay medium at 37°C. Potentiometric calibrations were performed in Mathematica 8.0–
10.2 (Wolfram Research; Champaign, IL).

Statistical and data analysis
Data analysis was performed in Mathematica 8.0–10.2. To visualize averaged time courses,
fluorescence and calibrated potential data were resampled at 30 s intervals. Statistical errors
indicate SE of independent microscopy sessions unless otherwise noted. Pairwise comparisons
were performed by two-tailed t-test. Other statistical tests are described in the text. Equilibra-
tion times were calculated by solving the differential equation of TMRM distribution across the
plasma membrane, a core equation of the biophysical model of the potentiometric calibration
(Eq. 18 in [21]). The equation was solved by NDSolve in Mathematica for [TMRM] in the
mitochondrial matrix after expressing its cytosolic concentration as a function of ΔψM using
the Nernst equation. Values for ΔψM, ΔψP and VF measured in the appropriate conditions
were used for the calculation. Finally, the 90% equilibration time was determined from the
resultant mitochondrial matrix [TMRM] time course.

Results

Measurement of the mitochondria:cell volume fraction
We previously developed a confocal microscopic stereological approach to determine VF, as an
alternative to the more laborious approach of electron microscopy [21]. This was achieved by
recording oversampled, high-quality images of a mitochondrial (MitoTracker Red CMX) and a
whole cell stain (calcein-AM) (Fig 1Ab), followed by calculation of the ratio of the total number
of mitochondrial pixels to the total number of cellular pixels counted computationally and
multiplied by a stereologic correction factor of 2/3 ([21], Fig 1Ae). The stereological approach
requires unbiased sampling of the cell monolayer. To avoid recording photo-damaged regions,
each x,y-coordinate was imaged only once, precluding recording of z-stacks. Therefore a set of
different cells in sparse cultures of primary β-cells was scanned while the z-focus was systemati-
cally cycled. To speed up recording, automation was developed. Using the Zeiss Zen Multi
Time Series PLUS, x,y-coordinates of individual cells were marked under the eyepiece, then
automatically imaged. Insulin immunofluorescence was recorded at the same coordinates ref-
erenced to an arbitrarily chosen origin in the sample (Fig 1Ac). During image analysis, only
immunopositive cells were processed by manual ROI masking. VF was 7.8±0.13% (n = 3) in
Wistar rat β-cells and 6.3±0.49% in INS-1 832/13 (n = 4). For comparison, it was 7.70±0.06%
in human non-diabetic subjects (n = 4 subjects) [20] and 6.94±0.08% in INS-1E cells [21].
Notably, this approach assumes that all β-cells have the same VF; possible deviations from this
assumption are tested below.

Measurement of TMRM binding
The apparent activity coefficient ratio aR’ accounts for biases in TMRM fluorescence arising
from non-ΔψMmechanisms, including probe binding to mitochondrial membranes,

Mitochondrial Membrane Potential in Pancreatic Beta-Cells
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Fig 1. Confocal microscopic determination of geometric and affinity parameters required for the calculation ofΔψM in rat primary β-cells. (A) The
mitochondria:cell volume fraction (VF) was calculated from confocal micrographs of live rat primary β-cells loaded with MitoTracker Red CMX and Calcein-
AM (a-b). β-Cells were identified by insulin immunocytochemistry (ICC; c). MitoTracker images were high pass filtered (d) and both Calcein and MitoTracker

Mitochondrial Membrane Potential in Pancreatic Beta-Cells
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differences in chemical activities between the cytosol and the mitochondrial matrix and the
dilution of fluorescence from the matrix by the intermembrane and intracristal space. There-
fore, using specimen-specific aR’ largely cancels the uncertainty in mitochondrial matrix vol-
umes resolvable only by electron microscopy [21]. aR’ is the TMRM fluorescence intensity in
the mitochondrion-free space of the nucleoplasm (Fig 1Ba top) relative to the intensity over
mitochondrial profiles (Fig 1Ba bottom), at zero ΔψM, in the absence of fluorescence back-
ground or high-affinity, potential-independent binding of TMRM to cellular components. In
practice, data collection was performed by recording the decay of TMRM fluorescence after
discharging ΔψM. Then, aR’ was calculated as the slope of fluorescence intensities measured
over the nuclei as a function of fluorescence intensities over mitochondria. This approach was
used to cancel the effects of autofluorescence and high affinity binding that are constant in
time, and therefore affect the y-axis intercept, but not the slope of this linear fit. This was done
because autofluorescence and high affinity binding are accounted for independently, by a dif-
ferent term (fx) in the ΔψM calibration. The value of aR’ was 0.296±0.007 (n = 4) in Wistar rat
β-cells and 0.36±0.05 in INS-1 832/13 cells. For comparison, it was 0.359±0.005 in human
non-diabetic subjects (n = 4 subjects) [20].

Potentiometric recording in rat primary β-cells
To determine the resting ΔψM and the magnitude of its response to glucose, rat primary β-cells
in dispersed islet cell cultures were preincubated in non-fluorescent, low glucose (3 mM) RPMI
medium containing the potentiometric probes (PM) for ~3 h. During this time, equilibrium
and steady baseline fluorescence intensity were reached. Fig 2 demonstrates the potentiometric
calibration. TMRM and PMPI fluorescence were captured with wide-field fluorescence time-
lapse imaging (Fig 2A). Data used for analysis were gated to insulin-containing cells (Fig 2Ad).
β-Cells were challenged by elevating [glucose] to 16 mM, then an internal calibration was per-
formed. The first step of the calibration achieves “complete mitochondrial depolarization” and
sets ΔψP close to the K+ equilibrium (diffusion) potential (Fig 2B). To this end a mixture of oli-
gomycin (1 μg/ml; inhibits F1Fo-ATPase), valinomycin (250 nM; K+ ionophore; also discharges
ΔψM) and antimycin A (1 μM; inhibits respiration) was applied and further supplemented by a
mixture of tetrodotoxin (1 μM; inhibits voltage-gated Na+ channels), IAA-94 (100 μM; inhibits
Cl- transport), DIOA (10 μM; inhibits K+/Cl- cotransport) and bumetanide (80 μM; inhibits
K+/Na+/Cl- cotransport) to mitigate cell swelling and stabilize ΔψP, as previously described
[20,21]. Notably, at this step (and also in all other experiments below) [glucose] was uniformly
set to 16 mM to support glycolytic ATP-production. Depolarization of ΔψM resulted in a char-
acteristic decay profile of TMRM fluorescence that was clearly observable in a 20 min recording
(Fig 2C). This decay curve encodes the baseline ΔψM into the recording, and when combined
with knowledge of the end point fluorescence (below), ΔψP, VF and aR’, allows calculation of
the absolute value of ΔψM, and all other required calibration constants.

The second part of the internal calibration enables the determination of baseline ΔψP. To
this end [K+] was incremented in several “calibration steps” up to ~80 mM by replacement of

images were binarized (e) to determine cellular and mitochondrial cross sections, respectively. Each β-cell was imaged in one of 10 serial z-planes to provide
a balanced representation of all planes, indicated here by the three rows of images of separate cells. Cross sections of non-β cells were manually removed
as indicated in the midplane images (the boundaries of the β-cell is marked by the dashed line). VF was calculated by the indicated formula after summing the
number of all mitochondrial and all cellular (including mitochondrial) pixels in all cells in a recording of 50–100 cells (represented by column e). (B) aR’ was
calculated from TMRM fluorescence after depolarization of mitochondria by FCCP (1 μM), oligomycin (1 μg/ml) and antimycin A (1 μM). aR’ is the slope of the
linear relationship between nuclear and mitochondrial fluorescence (F; as marked by the dashed line in the raw and gated fluorescence images, respectively)
as TMRM fluorescence intensity decays as it leaks out of the cell, and b is background fluorescence. The identity of β-cells was determined by post-hoc
immunofluorescence imaging, revisiting stored coordinates (right). Scale bars, 5 μm.

doi:10.1371/journal.pone.0159199.g001
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medium with PMK containing all previously added supplements (Fig 2B). Fluorescence inten-
sities measured after each step encode [K+]ic and the resting value of ΔψP. These steps, together
with the end point fluorescence (below), allow calculation of the baseline value of ΔψP using
the Goldman equation. Importantly, this requires only knowledge of external [K+], and no

Fig 2. Measurement of ΔψM in rodent primary β-cells. (A) Wide-field fluorescence view field of a dispersed rat islet cell culture loaded with PMPI (left;
green) and TMRM (right; red). a) 3 mM glucose baseline; b) 16 mM glucose; c) complete depolarization at the end of the experiment, corresponding to the
time courses shown in B-G; d) insulin immunofluorescence (red) and Hoechst 33342 nuclear staining (blue) in the same view field. (B-C) Fluorescence
intensity time courses of the potentiometric probes. (D-E) Time courses of calibrated potentials corresponding to B-C were calculated using VF = 0.078 and
aR’ = 0.296 and biophysical constants of the probes as previously published [21]. Data are mean±SE of n = 34 cells individually calibrated and pooled in five
view fields in a single well, and representative of 3 independent experiments. Potentials were calibrated in single or aggregates of insulin-positive cells as
indicated by regions of interests in Aa. (F-G) Calibrated potentials in 3 (groups of) cells indicated in Ab by arrows. Error bars indicate the predicted SE of the
calibration calculated by propagation of the errors in determinations of calibration parameters. (H) Calculation of parameters of ΔψP calibration using linear
regression on normalized fluorescence intensities and extracellular [K+] ([K+]ec) values during “calibration steps” shown in B. (I) Calculation of parameters of
ΔψM calibration using linear regression on normalized fluorescence intensities of TMRM decay. H and I correspond to cells indicated in Aa, F and G.
Normalization was performed as previously published [21].

doi:10.1371/journal.pone.0159199.g002
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assumption of [K+]ic is used for the calculation of ΔψP. Here we assumed that no permeabilities
for ions other than K+ contributed to the Goldman equation (PN = 0 [21]).

Finally, “complete depolarization” of both ΔψP and ΔψMwas achieved by fixing cells using
~2% v/v paraformaldehyde containing PMK supplemented with the Na-ionophore gramicidin
(10 μg/ml; Fig 2B). Both ΔψM and ΔψP calibrations (above) require these end-point fluores-
cence intensities.

Calibration of potentials in single cells with quality control
The calculation of potentials from PMPI and TMRM fluorescence intensity time courses was
performed using the “Membrane Potential Calibration Wizard” of Image Analyst MKII. Fig
2D and 2E show the average response of 34 cells in a representative experiment. Calibrating
single cell data allowed for quality control (QC) for healthy cells and analysis of the responses
of individual cells. QC was partly based on “normal behavior” of cells throughout the calibra-
tion procedure. The software calculates absolute values of potentials in mV using equations
given in [21]. The calibration parameters for these equations are determined for each cell auto-
matically by two linear regressions, one to obtain parameters required to calculate baseline
ΔψP (Fig 2H) and one to calculate baseline ΔψM (Fig 2I). The membrane potential-dependent
distribution of the probes dictates linear relationships between these graphed pairs of normal-
ized values (for details of the normalizations see [21]). Importantly, the “normal behavior” of
cells is defined by the underlying biophysical predictions that dictate these linear relationships.
An individual cell may deviate from this, for example, if it loses plasma membrane integrity
during calibration, or if the fluorescence signal is compromised by cell motility, wash-off or
debris. These cells were excluded by QC, and we used a linear fit criterion of r2>0.2 to pass
QC.

Another practical QC criterion is the precision of the calibration that can be evaluated by
the standard error associated with baseline potentials. Standard errors were calculated for each
data point in a single-cell trace (Fig 2F and 2G), using propagation of errors originating from
noise in intensity measurements, the precision of linear fitting, and the SE of other parameters
of the calibration, such as VF. Error estimation is implemented in the “Membrane Potential
Calibration Wizard” of Image Analyst MKII using standard error propagation through pub-
lished calibration equations [21]. As standard QC criterion we excluded traces with baseline SE
of ΔψP or ΔψM>25 mV. We also excluded traces in which baseline ΔψP was more depolarized
than -40 mV (in 3 mM glucose).

Notably, for the calibration of ΔψP one of the required parameters is the rate constant (kP),
which expresses the rate of PMPI uptake at zero potential. However, since the changes in
PMPI intensity (and ΔψP) were relatively slow, disequilibrium of the probe was not expected
to substantially distort the readout, and the actual value of kP did not noticeably affect the cali-
bration. Therefore we used the previously-determined value of 0.38s-1 [21]. This approach is
dubbed the “Complete with known kP (K-steps)” ΔψP calibration method. For calculation of
ΔψM the “Complete” calibration algorithm was used. In contrast, the rate constant of TMRM
distribution through the plasma membrane at zero ΔψP (kT) is calculated from each fluores-
cence trace by deriving it from the regression parameters in Fig 2I. The value of kT was 0.015
±0.002 s-1 in rat primary β-cells (n = 6 experiments) and 0.015±0.001 s-1 human primary β-
cells (n = 7 individuals, healthy or diabetic, from [20]). This kT value translates to 10 min time
to 90% equilibration of TMRM across the plasma membrane when mitochondria are
completely depolarized from potentials shown in Fig 2D and 2E before complete mitochon-
drial depolarization, and we used a 20 min time-lapse recording to capture this. This kT value
also predicts that 90% and 99% equilibration takes 34 and 67 min, respectively when cells are
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initially incubated with TMRM in the presence of TPB to speed up TMRM distribution at the
resting potentials given below (see [28] for TMRM equilibration times in the absence of TPB).

Optimization of the assay for use with β-cells in primary cultures of
dispersed islet cells
The temporal resolution required for complete, absolute calibration of ΔψM is dictated by the
speed of decay of TMRM fluorescence after complete mitochondrial depolarization. This decay
is relatively slow (~ 10 min to 90% equilibration, see above) in primary β-cells because of their
small surface:volume ratio. The resolution of the TMRM fluorescence decay is a requirement
for the “Complete” calibration to calculate kT and then the baseline ΔψM. The quality of the
linear regression derived from this decay recording shown in Fig 2I establishes a practical
frame rate requirement, but at slower cycle rates calibration can be performed if kT is already
known (Gerencser, unpublished). The length of the decay allowed parallel recording of 12 view
fields in six wells of a 96-well microplate at a rate of ~35 s/cycle with our microscope configura-
tion. Notably, kT allows conversion of disequilibrium TMRM fluorescence (including during
baseline) into potentials.

The composition of the cocktail used for “complete mitochondrial depolarization” was sim-
plified and optimized for β-cells. Valinomycin provides sufficient uncoupling of oxidative
phosphorylation, so the protonophoric uncoupler FCCP previously used in this cocktail [21]
was omitted. This resulted in a more stable and better polarized ΔψP during the calibration,
possibly because addition of FCCP generated a significant contribution of proton diffusion
potential to ΔψP or facilitated K+/H+ exchange and loss of [K+]ic. Calibrated baseline values
were not different when different valinomycin concentrations (100–1000 nM) were used, (data
not shown), suggesting that K+ equilibrium (diffusion) potential was reached. Notably, in β-
cells KATP channels may contribute substantially to plasma membrane K+ permeability in this
deenergized condition.

Next, the composition of the cocktail used for complete depolarization was simplified and
optimized. Use of the original complex cocktail [21] often caused a loss of PMPI fluorescence
in primary β-cells. Therefore we switched to using paraformaledehyde (PFA) to stop active ion
pumping and discharge potentials. An 8% v/v solution of PFA was mixed with 2×PM and 2 M
KCl in appropriate ratios to provide 1× probe concentrations and ~125 mM KCl. This solution
was then used to replace half of the PM over the cells. PFA did not interfere with PMPI fluores-
cence or its quencher as judged from the stability of the background fluorescence and similar
dynamic range of PMPI fluorescence as with the original cocktail. Using PFA is a substantial
simplification compared to our original method [21]. Importantly, it facilitates protocols that
include subsequent immunostaining for post-hoc cell type identification.

We noticed that both TMRM and PMPI could be significantly depleted (by 10–20%) by
handling of PM in polypropylene tubes and reservoir plates. The depletion can be detected by
measuring background fluorescence (before performing background subtraction). Therefore
all vessels were pre-incubated and rinsed with PM, or alternatively, a correction for depletion
of probes was applied during calibration, based on changes in background fluorescence inten-
sity using the “Expert overrides” tab in the “Membrane Potential Calibration Wizard”.

Optimization of the length of culturing of human β-cells
The dependence of the basal and glucose-stimulated values of ΔψM on the duration of islet and
cell culturing was studied in human β-cells in primary dispersed islet cultures from non-dia-
betic organ donors. Isolation stress and adaptation to culturing conditions may affect the phys-
iology of primary β-cells. Therefore we looked at how basal ΔψM at 3 mM glucose in the
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presence of 2 mM glutamine and other amino acids present in the RMPI 1640 medium, and its
response to elevation of glucose to 16 mM, changed with days in culture. Basal ΔψM (Fig 3A),
but not the extent of hyperpolarization evoked by 16 mM glucose (Fig 3B) increased with time
of islet culturing (day 0 was defined as the day islets were received after overnight shipping
from Prodo Laboratories). Resting ΔψMwas dependent on the whole islet suspension culturing
time, but not on dispersed islet culturing time (Fig 3C and 3D), and was less correlated to the
time of organ procurement or islet purification (not shown). Notably, in our recent study using
the same specimens [20] we drew conclusions based on data relative to baseline. Rat islets were
dispersed after 2 d in culture in this study.

Membrane potentials in rat primary β-cells and their response to glucose
Using the paradigm described above in Fig 2 the magnitudes of ΔψP and ΔψM and their
responses to glucose were studied in rat primary β-cells. After recording a ~15 min baseline,
[glucose] was elevated to 4–16 mM without altering probe concentrations in parallel wells of
the microplate (Fig 4). This was followed by the internal calibration shown in Fig 2, and poten-
tials were then calculated only in insulin-positive cells. The mean resting ΔψM at 3 mM glucose
in the presence of amino acids including glutamine was -120±4 mV (n = 3 experiments) and
this hyperpolarized to -166±10 mV (n = 3 experiments) upon exposure to 16 mM glucose. The
potentiometric calibration was performed independently, and internally for each glucose con-
centration. All recordings were started at identical baseline conditions, so that even though
treatments following baseline were different, the internal calibration performed at the end of

Fig 3. Stability ofΔψM during culturing of human primary β-cells in whole islet and dispersed cell
cultures. (A) ΔψM in 3 mM glucose (rich medium) as a function of days spent in whole-islet suspension
culture before dispersion. ΔψMwas measured 3–4 days after dispersing islet cells. (B) ΔψM
hyperpolarization evoked by 16 mM glucose corresponding to (A). (C) ΔψM in 3 mM glucose (rich medium)
as a function of days spent in dispersed islet cell culture after an arbitrary length of whole islet culturing. (D)
ΔψM hyperpolarization evoked by 16 mM glucose corresponding to (C).

doi:10.1371/journal.pone.0159199.g003
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the time lapse is expected to yield identical baseline potentials. Open symbols in Fig 4A and 4B
indicate that there was no significant difference between baseline potentials. Relative responses
(calculated as the difference between potentials at baseline and at 30–60 min) are shown in Fig
4C and 4D.

Glucose-evoked ΔψM is always monophasic in rat β-cells
Performing the potentiometric calibration on single cells allows the classification of β-cells
with differing responses. Representative single-cell recordings (Fig 2F) indicated that glucose-
stimulated ΔψP-depolarization in some cells reaches a plateau in ~5 min (defined as monopha-
sic), while in others, after the initial depolarization, ΔψP further depolarizes, reaching a plateau
in ~30 min (defined as biphasic). We observed oscillations in only a few rat β-cells. To investi-
gate the bioenergetic basis for the biphasic ΔψP response to 16 mM glucose we categorized β-
cells into monophasic and biphasic responders (Fig 5A). Biphasic response was defined by a
ΔψP at 30 min that was at least 10% more depolarized than in the first 5 min. Remarkably,
biphasic responders exhibited larger mitochondrial hyperpolarization than monophasic
responders from the beginning of the glucose stimulation, but the response of ΔψM to glucose
was monophasic in both cases (Fig 5B).

Heterogeneity of the response of individual rat β-cells to glucose
The heterogeneous response of the β-cell population to glucose is likely to play a role in tuning
the sensitivity of the islet [29,30]. We generally observed that individual β-cells had widely

Fig 4. Concentration-dependent hyperpolarization ofΔψM and ΔψP by glucose in rat primary β-cells.
(A-B) Absolute magnitudes of ΔψP and ΔψM. For each [glucose], first the baseline (open squares) was
recorded in the presence of 3 mM glucose in a rich medium then [glucose] was elevated to the indicated
value (closed circles). (C-D) Depolarization of ΔψP and hyperpolarization of ΔψM relative to baseline. The
square marks the zero value, while closed circles mark the relative change from the baseline. Data are mean
±SE of n = 3 experiments conducted similarly to the one shown in Fig 2. The response to glucose was
determined as the mean of potentials measured at 30–60 min after addition of glucose.

doi:10.1371/journal.pone.0159199.g004
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different absolute responses of ΔψP and ΔψM to a single [glucose] in our recordings in rat
(Figs 2 and 5) and in human β-cells [20]. In contrast to the stimulation by single concentrations
of glucose, Fig 6A visualizes the distribution of ΔψP and ΔψM over a range of [glucose] (4.5–16
mM; blue squares; solid isolines) and a single glibenclamide concentration (50 μM; red circles,
dotted isolines) in rat β-cells during the plateau of ΔψP depolarization. We observed a continu-
ous spread of the distribution of glucose-stimulated ΔψM in individual cells as opposed to dis-
crete responses corresponding to each [glucose]. The spread of the potentials is a hallmark of
heterogeneous single-cell response. We found an essentially similar relationship of ΔψP and
ΔψM in human β-cells treated with a single 16 mM glucose concentration [20].

An important question is the degree to which any detection error and unaccounted-for cell-
to-cell biological variability, such as potentially differing VF, contribute to the observed vari-
ability. Calculation of relative change for each cell may cancel effects of factors that differ
between individual cells. To assess this, besides plotting the absolute, plateau potentials (Fig
6A), the relative-to-baseline, glucose- and glibenclamide-evoked changes are shown in Fig 6B.
Next, we estimated the error of the potentiometric calibration for each individual cell as
described above. In this data set, for the absolute plateau of ΔψM, the estimated SE was 6.2±1.5
mV for single cells, and for the determination relative to baseline, it was 4.7±0.6 mV (n = 4
experiments; cells with predicted error>25 mV were rejected by QC). To visualize the effect of
the predicted inaccuracy of the calibration, 2-dimensional Gaussian distributions with SDs
equal to the estimated SE along the ΔψM and ΔψP axes were created and plotted with the same
algorithm and scaling as for Fig 6A and 6B in Fig 6C and 6D. These distributions show how
much of the variation in the measured single-cell responses is likely due to effects of stochastic
detection errors (top distributions in Fig 6D and 6E). Importantly, the relatively small variation
caused by errors in the calibration highlight that the heterogeneity we observed is due largely
to biological variation and not to measurement artefacts.

A possible biological variation between individual cells may be variable amounts of mito-
chondria, but the potentiometric calibration assumed an identical VF value. Therefore we

Fig 5. Biphasic glucose-inducedΔψP depolarization is linked to stronger, but monophasicΔψM
hyperpolarization. (A) ΔψP in glucose-stimulated rat β-cells. β-Cells were categorized into two groups
based on ΔψP with monophasic (open symbols) or biphasic (closed symbols) response to 12–16 mM
glucose. (B) ΔψM in β-cells categorized based on ΔψP in (A). Data are mean±SE of n = 4 experiments where
individual categorized cells within each experiment were expressed as a single mean value. The p-value
compares ΔψM (averaged in the interval of 30–60 min after glucose stimulation) between the two groups
using paired t-test for experimental replicates.

doi:10.1371/journal.pone.0159199.g005
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modeled the error potentially caused by a ±25% variation of VF between cells (bottom distribu-
tions in Fig 6D and 6E). Remarkably, the estimated error in the relative-to-baseline ΔψM calcu-
lation was insensitive to variations of VF, but such variation can introduce a substantial
uncertainty into the calculated absolute value of ΔψM. Thus, effects of varying amounts of
mitochondria per cell, and to a smaller extent, effects of recording noise are consistent with the
observed wider spread of the absolute potentials than the relative potentials (Fig 6A and 6B).
Importantly, variations in VF and measurement noise cannot explain the observed extent of

Fig 6. Heterogeneous response of individual rat β-cells to glucose. (A) ΔψP as a function of ΔψM in the presence of 4.5–16 mM glucose (solid isolines
and closed squares) or 50 μM glibenclamide (dotted isolines and open circles). Two-dimensional histograms show the distribution of absolute potentials
measured 30–60 min after secretagogue addition. Histograms were compiled from 364 and 55 cells for glucose and glibenclamide, respectively, pooled from
3 experiments (spanning the range of 4.5–16 mM [glucose] in each experiment using different wells, corresponding to data in Fig 4). Symbols indicate mean
±SE of potentials calculated by binning cells along the ΔψM axis (n = 3 experiments). (B) ΔψP depolarization relative to baseline as a function of ΔψM
hyperpolarization relative to baseline evoked by glucose or glibenclamide calculated from data in (A). (C-D) Predicted uncertainty of single-cell potential
calibration when the absolute magnitude of stimulation-evoked potentials (C; corresponding to A) or the relative changes to baseline (D; corresponding to B,
E,F) are calculated. The distributions marked by isolines visualize stochastic uncertainty originating from detection error assuming constant (top distribution)
or cell-to-cell variable VF (bottom distribution). Straight lines indicate the direction and magnitude of the predicted SE of a stimulation-evoked transient
change in the efficiency of collecting single-cell fluorescence of the indicated magnitude. Notably the standard error of the stimulation-evoked total
fluorescence change measured using the pH-insensitive fluorescence of superecliptic synaptopHluorin corresponds to the top line. (E) Relationship between
relative potential changes evoked by low glucose (4.5–6 mM; dotted isolines and open circles; 79 cells) and high glucose stimulation (8–16 mM; solid isolines
and closed squares; 285 cells). (F) Relationship between relative potential changes evoked by high glucose (8–16 mM; 285 cells) in the first phase of
stimulation (0–5 min; dotted isolines and open circles) and in the plateau phase of the stimulation (30–60 min solid isolines and closed squares). (A-B,E-F)
For each bin, values of ΔψP in the two groups were compared by t-test performed on the experimental repeats (*p<0.05; ns, not significant. p is not indicated
for bins where data were insufficient).

doi:10.1371/journal.pone.0159199.g006
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variability of glucose stimulation. The tighter distribution of ΔψM in glibenclamide-stimulated
β-cells (Fig 6B) further supports that the observed variability is not generic to the assay, but is
specific for the biology of glucose stimulation.

Next, we exclude possibility that systematic errors may inject a pattern into the distributions
shown in Fig 6. The measurements of ΔψP and ΔψM are not independent. The goal of the
potentiometric technique is to cancel the effects of ΔψP on TMRM fluorescence intensities, but
this correction may be insufficient due to measurement errors. The analysis of errors discussed
above showed that stochastic, independent errors in calibration of ΔψP cannot explain the
observed relationship of ΔψP and ΔψM. Furthermore, published sensitivity analysis [21] indi-
cates that erroneous calibration of ΔψP leads to systematic errors with the same sign in ΔψP
and ΔψM, thus would cause a spread of distribution perpendicular to that observed in Fig 6.

A considerable source of systematic error is the possibility of inaccurate collection of the
total fluorescence intensity from each single cell. The measurement may be confounded by cell
motility, shape changes, changes of focus or illumination intensities. This is a critical source of
error, because an artefactual, concomitant rise in both TMRM and PMPI fluorescence would
mimic ΔψP depolarization and ΔψM hyperpolarization, and could explain the observed rela-
tionship between ΔψP and ΔψM. Such changes are possible during liquid handling, e.g. when
cultures are stimulated by glucose, or during the calibration procedure. The effects of simulta-
neous, proportional TMRM and PMPI fluorescence changes were modeled by manipulating
experimental data. Modeling indicated that a single fluorescence change artefact cannot cause
an association between ΔψP and ΔψM in both absolute and relative plots (not shown). Abso-
lute calibrated potentials would be unaffected by any change in fluorescence collection before
the time period in which potentials are determined (e.g. 30–60 min after stimulation to plot
data in Fig 6A), but would be affected if the change happened during the “complete mitochon-
drial depolarization”. Artefacts occurring later in the calibration paradigm contribute little to
the error that mimics an inverted relationship of the two potentials (perpendicular to that
observed in Fig 6A). In contrast, the relative-to-baseline calibration can be biased by a change
in fluorescence collection between baseline and the measurement period, but is little affected if
such a change happens afterwards. Altogether, the marked relationship we observe between
glucose-stimulated ΔψP and ΔψM in both absolute and relative-to-baseline plots excludes the
possibility that a single artefactual change in efficiency of fluorescence detection causes the
observed phenomenon.

It remains a theoretical possibility that if the efficiency of fluorescence collection changes
upon glucose addition, and this change is reversed upon “complete mitochondrial depolariza-
tion” then this may cause the diagonal spread of potentials both in Fig 6A and 6B. To address
this possibility, in separate experiments using a fluorophore with constant brightness (the pH-
insensitive, UV-excited peak of superecliptic synaptopHluorin) the effect of glucose stimula-
tion on fluorescence intensities was measured in human primary β-cells. The SD of glucose-
evoked change was 2.4%. We modeled the effect of a ±2.4% (and ±20% for comparison) simul-
taneous change in fluorescence emission of TMRM and PMPI for the duration of glucose addi-
tion on ΔψP and ΔψM (Fig 6C and 6D, diagonal lines). None of these could explain the spread
of the distribution of glucose-evoked potentials. Altogether, the sensitivity analysis described
above provides solid support for the proposition that the visualized heterogeneity of glucose-
evoked ΔψP and ΔψM validly reflects biological changes in membrane potentials in single cells.

Constant relationship between ΔψP and ΔψM during glucose stimulation
The simultaneous assay of ΔψP and ΔψM in single cells allows mapping of their relationship,
and the sensitivity analysis described above has validated this approach. The fact that ΔψP and
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ΔψM are linked under glucose stimulation highlights the operation of the canonical pathway of
GSIS, where ΔψM hyperpolarization raises cytoplasmic ATP/ADP ratios, closing KATP and
depolarizing ΔψP. This linkage is suspended by artificially closing KATP with glibenclamide,
resulting in a smaller variation of measured potentials than in glucose-stimulated β-cells
(Fig 6B).

Previously we used this technology to compare human β-cells from type 2-diabetic and
non-diabetic individuals, and found no difference in the relationship between ΔψP and ΔψM,
indicating intact signaling between ΔψM and KATP in diabetes [20]. Because of the heteroge-
neous response of ΔψM to glucose, it was possible to observe this relationship using a single
[glucose]. In contrast, in Fig 6A and 6B, data from rat β-cells were pooled from a series of [glu-
cose] shown in Fig 4 in order to collect a sufficient number of cells to plot the distribution. This
recapitulated data from non-diabetic human β-cells [20]. Fig 6E indicates that stimulations by
4–6 mM and 8–16 mM glucose follow the same relationship between ΔψP and ΔψM, differing
only in the extent of response. Furthermore, Fig 6F compares the distribution of potentials in
the first 5 min to those in the 30–60 min window of the glucose stimulation. ΔψP at identical
ΔψMwas equal between the first and second phases of stimulation for most of the span of pos-
sible ΔψM values, but the first phase had a tendency towards a smaller ΔψP depolarization at
larger ΔψM hyperpolarization. This tendency appeared as a significant difference in Fig 5.

Altogether, these findings are consistent with the proposition that the operation of the
canonical pathway of GSIS is depicted by this assay. The variable extent of ΔψP depolarization
by different [glucose] is sufficiently explained by glucose-evoked changes in ΔψM, as different
cells with the same ΔψM hyperpolarization have the same ΔψP depolarization. However, the
above tendency and the observed behavior of biphasic ΔψP responders may indicate the opera-
tion of secondary coupling mechanisms in cells with highly hyperpolarized ΔψM in the second
phase of the stimulation.

Experiments using rhodamine 123 in quench mode give misleading
results in oligomycin-treated INS-1 832/13 cells
The quench mode potentiometric measurement of rhodamine 123 has been widely used for
qualitative and semi-quantitative determination of relative changes in ΔψM in β-cell research
[5,6,31,32]. This approach offers a largely ΔψP-independent determination of acute changes in
ΔψM, such as during glucose stimulation and following oligomycin treatment of insulinoma
cells (Fig 7A). The principle of the quench-mode ΔψM assay is that the fluorescence originating
from mitochondria is constant, and detected total fluorescence changes reflect alterations in
the probe concentration in the cytosol, which is in Nernstian equilibrium with the probe con-
centration in the mitochondrial matrix. This principle allows a decrease in total cellular fluo-
rescence to be interpreted as an increase in ΔψM, while an increase in fluorescence indicates a
decrease in ΔψM. In Fig 7A, therefore, the whole cell fluorescence traces suggest that glucose
hyperpolarizes ΔψM, which is then further hyperpolarized by oligomycin and finally depolar-
ized by the uncoupler FCCP. Importantly, this interpretation is absolutely dependent on the
assumption that the quench-mode mitochondrial fluorescence, governed by the quench limit,
is constant. Even a small change in quench-mode mitochondrial fluorescence may invalidate
this interpretation, because the total fluorescence originating from mitochondria is at least an
order of magnitude more intense than the fluorescence originating from the cytosol.

We demonstrate here that addition of oligomycin results in a decrease in quench-mode
fluorescence of rhodamine 123 localized to the mitochondrial compartment (Fig 7B and 7F)
indicating a decrease in the apparent quench limit in INS-1E and INS-1 832/13 cells at typical
loading conditions of rhodamine 123 (10 μg/ml for 30 min). The mitochondrial fluorescence
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Fig 7. Assaying the effect of oligomycin on ΔψM using rhodamine 123 in quenchmode in insulinoma
cells results in internally inconsistent data. (A) Whole cell fluorescence, (B) mitochondrial fluorescence
obtained by high pass filtering and (C) fluorescence over the nuclei in rhodamine 123-loaded INS-1E cells
following the additions of glucose (30 mM), oligomycin (2 μg/ml) and FCCP (1 μM). Data are mean±SE of
n = 3 experiments. Note that the oligomycin-evoked drop in quench-mode whole-cell fluorescence (A)
originates from the mitochondria (B) and not from the cytosol (approximated by rhodamine 123 fluorescence
in the nucleosol) (C). (D) Representative images of INS-1E cells. From top to bottom: raw fluorescence, high
pass filtered fluorescence to selectively transmit mitochondrial signal, and the temporal maximum intensity
projection of the latter image series indicating that no mitochondria moved into the ROIs (dashed outlines)
used to measure nuclear fluorescence (N). (E) Raw fluorescence, corresponding from top to bottom to
baseline, glucose and oligomycin treatments. The red color indicates high intensity. (D-E) Scale Bar, 10 μm.
(F) Mitochondrial fluorescence obtained by high pass filtering in INS-1 832/13 cells in the same condition as
above. Representative trace of three experiments.

doi:10.1371/journal.pone.0159199.g007

Mitochondrial Membrane Potential in Pancreatic Beta-Cells

PLOS ONE | DOI:10.1371/journal.pone.0159199 July 12, 2016 18 / 25



of rhodamine 123 was determined using the high pass filtering technique with the originally
published filter [27]. This indicates that total cellular fluorescence of quench-mode rhodamine
123 cannot be used to measure the effects of oligomycin on ΔψM. However, as follows from
the explanation above, rhodamine 123 fluorescence can be correctly interpreted in mitochon-
drion-free areas of the cell (Fig 7C). In contrast to the total cellular fluorescence, mitochon-
drion-free areas indicate no oligomycin-induced change in ΔψM. This is confirmed by
assaying ΔψM using the non-quench mode, absolute calibrated assay. This was done using a
microplate reader implementation of the technique (Gerencser et al unpublished) using the VF

and aR’ values derived above. Data from INS-1 832/13 cells using the absolute calibrated assay
is consistent with the observation using rhodamine 123 over the nuclei that oligomycin does
not further hyperpolarize INS-1 832/13 cell mitochondria in the presence of high (10 mM) glu-
cose (Fig 8). Interestingly, we found similar behavior of ΔψM in non-diabetic human primary
β-cells [20], and we interpreted this as the ability of high [glucose] to drive ΔψM (and therefore
the ATP/ADP ratio) to the “maximum” defined in the presence of oligomycin. Strikingly, in
type 2 diabetic β-cells oligomycin evoked further ΔψM hyperpolarization in high glucose [20]
highlighting a deficit in the extent of glucose-evoked ΔψM hyperpolarization. Thus, in this
respect, INS-1 832/13 cells had similar bioenergetic responses to the healthy human primary
β-cells.

Fig 8. Glucose stimulation and oligomycin inhibition of INS-1 832/13 cells followed using the absolute
ΔψP and ΔψM assay. (A) ΔψP and (B) ΔψMwere assayed by measuring whole-well fluorescence of TMRM
and PMPI in a microplate reader. Cultures were stimulated with glucose (10 mM) and treated with oligomycin
(2 μg/ml) as indicated. Fluorescence traces were calibrated based on the same principles as shown in Fig 2;
the time courses are shown truncated before calibration. Data are mean±SE of n = 10 independent
experiments.

doi:10.1371/journal.pone.0159199.g008
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Discussion
We have designed [21], applied [20], and simplified, improved and validated (this study) a
novel technology for unbiased determination of the absolute value of ΔψM in intact cells. Here,
we adapted this technique to single primary β-cells, estimated the standard error for each cali-
brated cell, and performed sensitivity analysis for using distribution plots of ΔψP and ΔψM in
single-cells. Error estimation provided QC for single-cell data and validated the technique. Sin-
gle-cell analysis of how ΔψP is linked to ΔψM indicated a variable bioenergetic activation in
glucose-stimulated β-cells and operations of the canonical and possibly amplification pathways
of GSIS. The significance of this novel technology is highlighted by our recent study [20],
which revealed a bioenergetic signature of type 2 diabetes in human β-cells, and the validity of
these data is further supported by the findings presented here.

Previous assays of ΔψM in relation to insulin secretion have been qualitative or semi-quanti-
tative (see [33,34]). Changes in ΔψM have typically been expressed as changes of fluorescence
intensity from a baseline, to normalize for sample quantity and detector settings. In earlier
studies on primary β-cells and insulinoma lines [5,6,31,32], this approach did not allow for
unbiased comparison, because quench-mode fluorescence changes also depend on mitochon-
dria:cell volume fractions and quench limits that may be different between samples. Impor-
tantly, we have shown here that the quench limit of rhodamine 123 appears to change during
an experimental time course critical to the evaluation of β-cell energy metabolism (Fig 7).
Changes of ΔψM deduced from non-quench mode fluorescence have been previously contami-
nated by changes in ΔψP [10,15,35,36], a biasing factor that the absolute potentiometric tech-
nique corrects for. The combination of TMRM and PMPI and computational correction for
the effects of ΔψP on TMRM accumulation has been in place before [37,38], however many
subtleties of probe distribution were not accounted for and absolute potentials were not calcu-
lated (see [21]). Other techniques used for assaying ΔψM include the fluorescence probe JC-1,
which is non-quantitative despite its ratiometric application, for a number of reasons [28,39],
and bulk radioactive isotope distribution assays [40], which are inconvenient because of their
long equilibration times, end-point nature and large specimen requirement, or specialized
cases of using TMRM or TMRE in cells with large and stationary mitochondria, e.g. cardio-
myocytes [41], that are not applicable to β-cells.

ΔψM is the main component of the mitochondrial proton motive force, which is proximally
upstream of the ATP/ADP ratio. Precise determination of the cytoplasmic ATP/ADP ratio is
currently hindered by biological factors (compartmentalization and binding [9,42,43]) and by
working range and calibration issues with fluorescent ATP/ADP sensors, and this makes ΔψM
amore sensitive reporter of bioenergetic forces driving GSIS than the ATP/ADP ratio. Further-
more, potentials are intensive quantities, therefore when comparing samples, normalization to
cell mass is avoided, improving precision. This is a remarkable advantage compared to cell res-
piration, which is an extensive property. Although ΔψM is not accessible using electrophysio-
logical recordings, most knowledge about β-cell ΔψP originates from whole-cell recordings
[44]. Critical to β-cell physiology, measuring absolute values of ΔψM and ΔψP using fluores-
cence does not disrupt the plasma membrane or the intracellular milieu, unlike electrophysiol-
ogy, which is a very significant advantage. In addition, orders of magnitude more cells can be
sampled in parallel using single-cell fluorescent techniques than electrophysiological ones.

Our data (this study for rat primary β-cells and INS-1 832/13 insulinoma cells and [20] for
human primary β-cells) quantify for the first time the magnitude of glucose-evoked activation
of mitochondrial polarization (-34 to -45 mV; [20], Figs 4 and 8). To illustrate the impact of
the magnitude of this ΔψM hyperpolarization, it could increase the maximum available rate of
ATP synthesis about 100-fold [45] and the cytosolic ATP/ADP ratio to about 500-fold [46]. This
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strong dependence of mitochondrial energy metabolism on substrate supply is central to the
operation of the canonical pathway of GSIS. Metabolic control theory [47] predicts that ΔψM is
determined by the interplay of activities of supplying pathways (from glycolysis to respiratory
chain) and demand pathways (ATP synthesis and cellular ATP demand). This implies that the
balance between the activities of these pathways is critical for GSIS. We have proposed that a dis-
turbance of this balance may degrade GSIS in type 2 diabetic human β-cells [20].

The value of ΔψM in non-diabetic human β-cells at low glucose (~-130 mV in humans and
-120 mV in rats) is somewhat smaller than the value (~-140 mV) we found in rat neurons [21]
or human stem cells [48] using the same technology, while in β-cells in high glucose it is similar
(~-160 mV) to electrically activated neurons [21]. Thus ΔψM is regulated in β-cells in a similar
range as in other cell types. Altogether, these results suggest that β-cell energy metabolism is
not specialized in terms of capacity, but rather in its response to nutrients to support GSIS.

The glucose response by dispersed β-cells (Fig 4) was left-shifted compared to published
data on intact islets [49–51], but was similar to the glucose-dependence of Ca2+-responses in
dispersed rat β-cells [15]. A possible explanation of this is either that the physiology of dis-
persed β-cells differs from that of intact islets due to lack of cell to cell contacts, or that the lack
of circulation in intact isolated islets poses a diffusional barrier to glucose, and requires higher
external glucose concentrations to achieve the same level of stimulation.

Working with limiting amounts of human organ donor or rodent islets requires micro-scale
assays. The single-cell approach maximizes the amount of data obtainable from these speci-
mens. The cell dispersion [20], culturing and QC paradigms decrease bias from sampling islets
from different parts of the pancreas or sampling cells from different parts of islets [20]. Cell via-
bility is ensured by culturing and by single-cell QC during data analysis. In comparison,
another key bioenergetic assay, respirometry, requires about tenfold more material per assay
well when performed using Seahorse cell respirometry [22,52] or 150-fold more per assay for
flow-through respirometry [53,54].

We exploited cell-to-cell heterogeneity to describe the relationship of ΔψM hyperpolariza-
tion and activation of ΔψP signaling in human β-cells [20], and here we showed that a very
similar relationship exists in rat β-cells (Fig 6). The tight linear spread of the ΔψP– ΔψM distri-
bution data measuring the effect of glucose (Fig 6B) suggests that the heterogeneity in ΔψP was
caused by different levels of mitochondrial polarization, and all coupling factors that affect
plasma membrane were linked to ΔψM uniformly for the cell population. In contrast, a cell-to-
cell heterogeneous response downstream of ΔψMwould lead to a poor association between
ΔψP and ΔψM, rather than a tight linear spread of values. Importantly, we have demonstrated
the resolution of the approach by observing the distinguishable effects of the downstream effec-
tor glibenclamide and by estimating the effects of experimental errors from various sources.
This sensitivity analysis was important because it allowed us to reject the possibility that con-
founding factors may have imposed an artefactual relationship between ΔψM and ΔψP. Over-
all, measurements and modeling verified that our observations cannot be explained by factors
interfering with the accuracy of the calibration, and therefore must reflect an inherent property
of β-cell physiology. These data also support the possibility of substantial variations in the
amounts of mitochondria per cell in individual β-cells.

Our recordings using quench-mode rhodamine 123 indicate that fluorescence data collected
from whole cells or cultures can be misleading. Importantly, we recapitulated a commonly-
used paradigm and it resulted internally inconsistent data (Fig 7) that was also inconsistent
with the results of the absolute calibrated assay (Fig 8). Data indicated that the principle of
quench–mode assaying of ΔψM does not hold in our experiments, and the fluorescence inten-
sity of rhodamine 123 measured over the mitochondria changes during the recording. This
may happen if ultrastructural changes induced by oligomycin [55] affect the quench limit, but
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also if mitochondria respond heterogeneously and some of the probe disappears by redistribut-
ing from completely depolarized mitochondria to charged ones, where the probe is subse-
quently quenched. Importantly, data obtained by quench-mode fluorescence of rhodamine 123
measured over the nucleus, which is devoid of mitochondria (Fig 7), are consistent with data
from the absolute calibrated assay (Fig 8). Notably, we used the latter approach to study possi-
ble fluctuations in ΔψM in INS-1 832/13 cells in our recent study [56]. The potentiometric
technique described here uses TMRM in non-quench mode, therefore changes in quench limit
do not compromise the precision of the calibration.

Conclusions
In conclusion, the work presented here has simplified the absolute potentiometric assay of
ΔψM in pancreatic β-cells by replacing the multi-component ‘complete depolarization cocktail’
[21] with PFA, improved it by adding error propagation and QC, validated it by analyzing and
eliminating various artefactual explanations of the observed relationships between ΔψM and
ΔψP, and by showing how it is superior to commonly-used determinations using rhodamine
123. Application of the absolute calibrated ΔψM assay in β-cells could help further understand-
ing of subtleties of GSIS by delineating relationships between the bioenergetic driving force,
secondary coupling factors and insulin secretion, and aid identification of mechanisms that
regulate the balance of cellular energetics.
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