2015

Treatment Outcomes for Infections Caused by “SPICE” (S–Serratia, P–Pseudomonas aeruginosa, I–Indole positive Proteus, C–Citrobacter, E–Enterobacter) Organisms: Carbapenem Versus Non-Carbapenem Regimens

Stanley Moy
Roopali Sharma
Touro College of Pharmacy

Follow this and additional works at: https://touroscholar.touro.edu/tcopny_pubs

Part of the Bacterial Infections and Mycoses Commons, and the Pharmacy and Pharmaceutical Sciences Commons

Recommended Citation
Treatment Outcomes for Infections Caused by “SPICE” (S.-Serratia, P.-Pseudomonas aeruginosa, I-Indole positive Proteus, C.-Citrobacter, E.-Enterobacter) Organisms: Carbapenem Versus Non-Carbapenem Regimens

Stanley Moy, PharmD1; Roopali Sharma, PharmD2; 1State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York; 2SUNY Downstate Medical Center, Brooklyn, New York

Session: 132, Bacteremia and Endocarditis
Friday, October 9, 2015: 12:30 PM

Background. Techniques to identify AmpC β-lactamases in SPICE organisms are not yet optimized for the clinical laboratory and are not routinely done. Clinicians are often left with an uncertainty on the choice of antibiotic when a SPICE organism is isolated. The purpose of this study is to evaluate the outcomes of carbapenem versus non-carbapenem regimens in treating bacteremia or urinary tract infection (UTI) from a SPICE organism in a “real-world” setting.

Methods. This was a single-center, retrospective, case-cohort study consisting of adult patients who had clinical infection with a SPICE organism isolated from blood or urine cultures. Patients were excluded if they did not receive at least 48 hours of antimicrobial therapy, had a polymicrobial infection, or received additional antibiotics due to a concomitant infection. Patients were divided into carbapenem or non-carbapenem regimen groups. The primary endpoint was clinical response defined as resolution of signs and symptoms of infection at the end of therapy.

Results. A total of 145 patients were enrolled in this study. There were 20 patients who received meropenem while 125 received a non-carbapenem regimen. The percentage of patients that were bacteremic was 46.2%. The most common organisms isolated were Enterobacter in 38.6% of patients followed by Pseudomonas in 33.8%. Clinical response overall was achieved in 80% of patients on meropenem versus 90.3% of patients on non-carbapenem regimens (p = 0.24). Microbiologic cure was 90% for patients on meropenem versus 91.2% for patients on non-carbapenem regimens (p = 1). The results were similar after logistic regression controlling for SAPSII score and source of infection. The most common non-carbapenem antibiotic utilized for bacteremia was piperacillin/tazobactam (77.6%) and for UTI was ceftriaxone (41.0%). Piperacillin/tazobactam had an 88.5% rate of clinical response for bacteremia (p = 0.41 versus carbapenem). Ceftriaxone had an 84.4% rate of clinical response for UTI (p = 1 versus carbapenem).

Conclusion. In this “real-world” study, clinical response of patients treated for a SPICE organism did not differ significantly between carbapenem and non-carbapenem regimens. Current CLSI breakpoints set for SPICE organisms may still reliable and may not require additional testing for AmpC β-lactamases.

Disclosures. All authors: No reported disclosures.