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Abstract: The DNA damage response (DDR) is a molecular mechanism that cells have evolved to
sense DNA damage (DD) to promote DNA repair, or to lead to apoptosis, or cellular senescence
if the damage is too extensive. Recent evidence indicates that microRNAs (miRs) play a critical
role in the regulation of DDR. Dietary bioactive compounds through miRs may affect activity of
numerous genes. Among the most studied bioactive compounds modulating expression of miRs are
epi-gallocatechin-3-gallate, curcumin, resveratrol and n3-polyunsaturated fatty acids. To compare the
impact of these dietary compounds on DD/DDR network modulation, we performed a literature
search and an in silico analysis by the DIANA-mirPathv3 software. The in silico analysis allowed us to
identify pathways shared by different miRs involved in DD/DDR vis-à-vis the specific compounds.
The results demonstrate that certain miRs (e.g., -146, -21) play a central role in the interplay among
DD/DDR and the bioactive compounds. Furthermore, some specific pathways, such as “fatty acids
biosynthesis/metabolism”, “extracellular matrix-receptor interaction” and “signaling regulating the
pluripotency of stem cells”, appear to be targeted by most miRs affected by the studied compounds.
Since DD/DDR and these pathways are strongly related to aging and carcinogenesis, the present
in silico results of our study suggest that monitoring the induction of specific miRs may provide the
means to assess the antiaging and chemopreventive properties of particular dietary compounds.

Keywords: food; bioactive compounds; n3-PUFA; resveratrol; curcumin; epi-gallocatechin-3gallate;
chemoprevention

1. Introduction

The DNA in each of our cells accumulates thousands of lesions every day. Cells are continuously
challenged by DNA damage stimuli from various exogenous environmental factors, such as ultraviolet
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(UV) radiation, ionizing radiation (IR) and numerous chemical agents, or endogenous sources mainly
represented by products of cellular metabolism. DNA damage can interfere with essential cellular
processes, such as transcription or replication, and can compromise the viability of the cell. Specific
DNA lesions can also induce mutations that cause cancer or other diseases, as well as contribute to
the aging process [1]. DNA damage at the telomeric chromosomal sections definitely has pro-aging
consequences [2]. Fortunately, cells have developed elaborate and efficient response pathways to
preserve genomic stability. The DNA damage response (DDR) [3] is an evolutionarily-conserved
signaling cascade activated by DNA damage (DD), which directs cell fate toward DNA repair,
senescence or apoptosis [4]. DDR is a signaling network initiated by lesion recognition and amplified
by multiple mediator signaling proteins, which eventually activate downstream effectors to modulate
cell fate. Multiple DNA repair pathways have evolved to resolve various DNA lesions, including:
base excision repair that removes damaged bases; mismatch repair that recognizes base incorporation
errors and base damage; nucleotide excision repair that removes bulky DNA adducts; and cross-link
repair that removes inter-strand cross-links. In addition, breaks in the DNA backbone are repaired
via double-strand break (DSB) repair pathways, including homologous recombination (HR) and
nonhomologous end joining [5]. If DNA lesions are not properly repaired or amended during
replication, they can be converted into permanent mutations. When this occurs at the sites of oncogenes
or tumor suppressor genes, the risk of neoplastic cell transformation is significantly increased [1,6]. In
higher organisms, successful DDR is thought to prevent neoplastic transformation in a cell-autonomous
manner, by ensuring removal of cells with severely damaged DNA [7]. DDR signaling has been
suggested as a key mechanism linking DNA damage accumulation, cell senescence and organismal
aging. In fact, during the cell lifetime, the genomic DNA is continuously exposed to different exogenous
or endogenous factors that destabilize its integrity and functionality. Therefore, genomic instability
and decline of DNA repair efficiency is considered one of the main drivers of the aging process [8].
However, emerging data suggest that DDR signaling can also work through a paracrine/systemic
mechanism, shaping the systemic environment through the regulation of tissue repair and immune
responses [9]. Given the fundamental role of DDR in maintaining genome integrity, this complex
signaling network requires accurate regulatory mechanisms to respond to different types of DNA
lesions in different stages of the cell cycle.

Recently, microRNAs (miRs) have emerged as important players in regulatory networks affecting
the DNA damage/repair process in a wide range of physiological and pathological conditions [5,10].
miRs are 18–25 nucleotide non-coding RNAs that post-transcriptionally regulate gene expression
stalling the translation of the cognate mRNA or promoting its degradation [11]. miRs have been
identified to influence physiological processes, such as development, growth and differentiation [12],
and have also been implicated in a wide range of diseases [13]. Multiple miRs may target the same
miR, and the majority of miRs contain multiple binding sites for miRs, generating a highly complex
regulatory network system by which hundreds of genes involved in different signaling pathways can
be regulated simultaneously [14].

Nutrients and their bioactive compounds can modulate the miRs’ expression involved in many
physiological and pathological processes [15]. Nutrition is the process that offers different substances
to an organism that can work as energy suppliers (carbohydrate and fat), as cell structure sources
(proteins) and on metabolism control (vitamins and minerals), thereby maintaining its homeostasis.
The importance of diet and nutrition in human health and disease is well established. Basic laboratory
research, clinical trials and epidemiological studies demonstrated that nutrient-rich bioactive foods
can induce epigenetic changes and alter genes’ expression by the alteration of the histone structure,
DNA methylation and miRs’ modulation [16].

Epi-gallocatechin-3-gallate (EGCG), resveratrol (RSV), curcumin (CRC) and n3-PUFA
(n3-polyunsaturated fatty acids) are among the most studied compounds shown to have beneficial
effects on human health [17,18]. EGCG, RSV and CRC are polyphenols present in fruits and vegetables.
n3-PUFAs, are polyunsaturated fatty acids found in plants, as linolenic acid (ALA), or in fish
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eicosapentaenoic acid (EPA); and docosahexaenoic acid (DHA). Each of these four dietary compounds,
at a concentration that potentially may be achievable in the organism, has been shown to suppress
cell proliferation and induce apoptosis in certain types of human cancer cells [18,19]. In addition to
potential anticancer activity, they possess cardiovascular protective properties [20,21] and beneficial
effects on degenerative diseases [22]. Furthermore, an anti-inflammatory and antioxidant activity has
been frequently associated with these compounds [23]. Most importantly, all of them may exert these
effects by modulating miRs’ expressions [24,25]. In order to investigate and compare the impact of
these specific food-derived compounds on DDR processes, we performed a literature search to identify
miRs involved in DD/DDR and modulated by these dietary compounds. An in silico analysis using
the DIANA software web-server was applied to identify targets and pathways that play a major role
in the DD/DDR modulation by these compounds [26]. The results of the analysis of the pathways
allowed us to speculate how food intervention could modulate DD/DDR.

2. Results

2.1. miRs Involved in DD/DDR and Bioactive Compounds Modulated

The results of a literature search for miRs involved in DD/DDR processes are reported in Table 1.
Table 2 shows the literature search results for miRs modulated by each of the four compounds: EGCG,
CRC, RSV and n3-PUFA, including the tissue/cell type, dose/concentration and duration of exposure
of cells/tissue to the compound used in the cited study. Most of the studies we found with our search
criteria (see Materials and Methods) have been performed in vitro and most of them on different human
cancer cells.

Table 1. MicroRNAs involved in DD/DDR processes.

miRs Reference

miR-34a/b/c, miR-192, miR-215, miR-16-1, miR-143, miR-107, let-7, miR-200c, miR-16,
miR-145, miR-134, miR-449a/b, miR-503, miR-21, miR-24, miR-421, miR-504, miR-125b,
miR-106b, miR-21, miR-210, miR-373, miR-100, miR-195, miR-124a, miR-290 cluster
(miR-291-3p, miR-294, miR-295)

[5,27]

miR-363, miR-25, miR-542 [28]

miR-421, miR-24, miR-34a/b/c, miR-504, miR-125b, miR-302, miR-92, miR-192, miR-194,
miR-215, miR-106a-92 cluster (miR-106a, miR-18b, miR-20b, miR-19b-2, miR-92a-2, miR-363),
miR-106b/25 cluster (miR-106b, miR-25, miR-93), miR-210, miR-128, miR-20, miR-130b,
miR-143, miR-145, miR-16-1, miR-16, miR-103, miR-26a, miR-206

[27]

miR-15a, miR-29, miR-107, miR-605, miR-17-92 cluster (miR-17, miR-18a, miR-19a, miR-20a,
miR-19b-1, miR-92a-1), miR-21-605, miR-221, miR-222, miR-138, miR-223, miR-181a, miR-27a,
miR-214, miR-101, miR-185, miR-100, miR-506, miR-545, miR-124, miR-9, miR-182, miR-146a

[10]

Table 2. MicroRNAs modulated by bioactive compounds; the effect on human normal or cancer cells.

Compound miRNA Reference Cells/Cancer Dose/Duration

EGCG

miR-18, miR-16, let-7a, miR-221,
miR-34b, miR-193b, miR-222, miR-342 [29] hepatic cancer 100 µM, 24 h

miR-636, miR-3907 [30] normal dermal fibroblasts 10 µM, 24 h

miR-200c [31] colorectal cancer cells and
colon cancer stem cells 100 µM, 24 h

miR-210, miR-98-5p [32,33] lung cancer 40 µM, 9 h 10 µM, 24 h

miR-1, miR-126 [34,35] osteosarcoma 0.08 g/L, 48 h 0.2 g/L,
72 h
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Table 2. Cont.

Compound miRNA Reference Cells/Cancer Dose/Duration

miR-194 [36] hepatocarcinoma 10 µg/mL, 48 h

miR-7-1, miR-34a, miR-99a, miR-92, miR-93,
miR-106b [37,38] neuroblastoma 50 µM, 24 h

miR-25, miR-92, miR-141, miR-200a [39] Hela cells and
lymphoblasts 1–5 µM, 24 h

miR-33a, miR-122 [40] hepatocarcinoma 50 µM, 1 h

EGCG

miR-92, miR-93, miR-106b, miR-7-1, miR-34a,
miR-99a [41] neuroblastoma 50 µM, 24 h

miR-467bn, miR-487b, miR-197, miR-805,
miR-374n, let-7f, miR-350, miR-24-1n, miR-137,
miR-335-3p, let-7a, miR-222, miR-26b,
miR-30c-1n, let-7d, miR-98, miR-30c, miR-30bn,
miR-32, miR-674n, miR-532-5p, let-7g, miR-18a,
miR-192, miR-302d, miR-30b, miR-802, let-7e,
miR-322, miR-720, miR-146b, miR-340-3p,
miR-185, miR-425, miR-10a, miR-126-5p,
miR-101a, miR-30en, let-7c, miR-141, miR-33,
miR-29an, miR-199b, miR-450a-5p, miR-21,
miR-23a, miR-101b, miR-148a, miR-193,
miR-23b, miR-107, miR-140, miR-551b,
miR-466c-5p, miR-106a, miR-590-3p,
miR-875-3p, miR-224, miR-292-5p, miR-678,
miR-469, let-7bn, miR-463n, miR-574-3p,
miR-201, miR-290-3p, miR-181a, miR-302a,
miR-429, miR-133a, miR-190b, miR-710,
miR-135b, miR-296-5p, miR-191n, miR-188-5p,
miR-298, miR-181a-1n, miR-466g, miR-26bn,
miR-466f-3p, miR-29bn, miR-1224,
miR-291b-5p, miR-324-5p, miR-486, miR-128,
miR-450b-3p, miR-135an, miR-294, miR-671-5p,
miR-878-3p, miR-801, miR-370, miR-1,
miR-494, miR-133b

[41] hepatocarcinoma 100 µM, 24 h

CRC

miR-192-5p/215 [42] lung cancer 15 µM, 48 h

miR-7 [43] pancreatic cancer 3–6 µM, 72 h

miR-22 [44,45] retinoblastoma 20 µM, 48 h

miR-27a [46] colon cancer 2.5–10 µg/mL, 24 h

miR-21 [47]

let-7a, miR-21, miR-34a [48] esophageal cancer 30 µM, 24 h

miR-221 [44,49] pancreatic cancer 500 nM of synthetic
CRC analogue, 72 h

CRC

miR-27a, miR-20a, miR-17-5p, miR-21 [41] colon carcinoma 30 µM, 24 h

miR-203 [41] bladder carcinoma 10 µM, 3 days

miR-320, miR-26a, let-7i, miR-130a, miR-16,
miR-125b, miR-23a, miR-27b, miR-155,
miR-625, miR-576-3p, miR-186n, miR-9n, let-7i

[50] lung adenocarcinoma 15 µM, 48 h

miR-15a, miR-16-1 [41] leukemic cells 5–20 µM, 24-72 h

miR15a, miR-16 [51] breast cancer 10–60 µM, 24 h

miR-103, miR-140, miR-146b, miR-148a,
miR-15b, miR-181a, miR-181b, miR-181d,
miR-195, miR-196a, miR-199an, miR-19a,
miR-204, miR-20a, miR-21, miR-22, miR-23a,
miR-23b, miR-24, miR-25, miR-26a, miR-27a,
miR-34a, miR-374, miR-510, miR-7, miR-92,
miR-93, miR-98

[41] pancreatic cancer 10 µM, 72 h
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Table 2. Cont.

Compound miRNA Reference Cells/Cancer Dose/Duration

RSV

miR-663, miR-744m [44,52] breast cancer 100 µM, 24 h

miR-21 [44,53] pancreatic cancer 50 µM, 24 h

miR-520h [54] lung cancer 10–20 µM, 48 h

miR-21, miR-181b, miR-663, miR-30c2 [55]

peripheral blood
mononuclear cells
from hypertensive
patients

RSV (8 mg) grape
extract, one year daily
intake ( in vivo study)

miR-150, miR-296-5p [56] lymph node cancer
prostate 50 µM, 24 h

miR-33a, miR-122 [40] hepatocarcinoma 50 µM, 1 h

miR-155 miR-663 [57] monocytic cells 30–50 µM, 14 h

RSV

miR-155, miR-34a [58] EBV-immortalized B
cells 25–50 µM, 24 h

miR-7, miR-17, miR-18b, miR-20a, miR-20b,
miR-92b, miR-106a, miR106b, miR-17-5p,
miR-20a, miR-106b, miR-17-92 cluster,
miR-106ab clusters

[59] prostate cancer 50–100 µM, 24 h

miR-622 [41] bronchial epithelial
cells 50 µM, 48 h

miR-155, miR-633 [41] monocytes 30 µM, 14 h

let-7c, miR-106a, miR-106b, miR-1224-5p,
miR-1228, miR-231, miR-1246, miR-1260,
miR-1267, miR-1268, miR-129, miR-1290,
miR-1308, miR-1469, miR-149, miR-150,
miR-152, miR-15a, miR-17, miR-1825, miR-185,
miR-18b, miR-1908, miR-1915, miR-197,
miR-1972, miR-1973, miR-1974, miR-1975,
miR-1977, miR-1979, miR-20a, miR-20b,
miR-24, miR-296-5p, miR-483-5p, miR-513a-5p,
miR-548q, miR-572, miR-575, miR-612,
miR-638, miR-654-5p, miR-659, miR-671-5p,
miR-7, miR-762, miR-764, miR-874, miR-92b,
miR-939

[41] lymph node cancer
prostate 50 µM, 48 h

miR-1, miR-100-1/2, miR-102, miR-103-1,
miR-103-2, miR-146a, miR-146b-5p, miR-16-0,
miR-17, miR-181a2, miR-194-2, miR-196a1,
miR-205, miR-206, miR-21, miR-23a, miR-23b,
miR-25, miR-26a, miR-29c, miR-30a-3p,
miR-30c-1, miR-30d, miR-30e-5p, miR-323,
miR-340, miR-363n-5p, miR-424, miR-494,
miR-497, miR-560, miR-560, miR-565, miR-565,
miR-572, miR-574, miR-594, miR-615, miR-622,
miR-629, miR-631, miR-638, miR-639, miR-657,
miR-659, miR-663, miR-801, miR-92a-2

[41] colorectal carcinoma 50 µM, 14 h

n3-PUFA miR-192, miR-30c, miR-141-3p, miR-221-3p,
miR-1283, let-7f, miR-181a-5p, miR-1, miR-30a [60] Caco-2 cells 200 µM DHA in lipid

micelles, 24 h

n3-PUFA

miR-26a, miR-26b [61] cholangiocarcinoma 50 µM DHA, 12 h

miR-221 [62] endothelial
progenitor cells 25–125 µM EPA, 4 h

miR-146, miR-181a [63] glioma 25–50 µM DHA, 48 h

miR-21 [64] breast cancer 152 nM DHA, 24 h

miR-30c, miR-20b, miR-16, miR-22, miR-145,
miR-34, miR-25, miR-17, miR-26a, miR-29c,
miR-200a, miR-206, miR-323, miR-16, miR-22,
miR-20b, miR-30c, miR-183, miR-224, miR-145,
miR-181a, miR-208, miR-143, miR-20a,
miR-149, miR-125b

[19,65] glioma 50–100 µM DHA, 24 h
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The Venn diagram in Figure 1, shows the common and distinct miRs modulated by bioactive
compounds and DD/DDR processes. The literature analysis indicates that a large number of the
DD-associated miRs can be modified by dietary bioactive compounds. Furthermore, this analysis also
revealed that the expression of some miRs seems to be compound class specific, while others miRs
seem to be modulated by more than one bioactive compound. Interestingly, we found six miRs that
were common to all of the compounds (indicated in red in Figure 1).
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Figure 1. Venn diagram showing the microRNAs involved in DD/DDR (ellipse, grey) and identified
as modulated by bioactive compounds: EGCG (epi-gallocatechin-3-gallate; green), CRC (curcumin;
blue), RSV (resveratrol; pink) and n3-PUFAs (n3-polyunsaturated fatty acids, yellow). The common
miRNAs, modulated by all four compounds, are indicated in red (miR-16, miR-25, miR-21, miR-181a,
miR-146b, miR-34a).

2.2. In Silico Analysis of Pathways Shared by Different miRs Involved in DD/DDR and Modulated
by Compounds

For the in silico analyses reported in Tables 3–7 and Figures 2–6 common miRNAs between Tables 1
and 2 and reported in Venn diagram (Figure 1) were used.

Table 3 depicts the statistically-significant enriched KEGG pathways for miRs involved in
DD/DDR and modulated by all compounds together (EGCG, CRC, RSV and n3-PUFA). The visual
representation of the binary heat map showing the miRNAs/pathways interaction is reported in
Figure 2. We found 14 KEGG pathways significantly related to genes targeted by miRs regulated by all
four compounds. A consistent number of pathways were involved in energy metabolism, including the
“mTOR signaling”, “fatty acid biosynthesis” and “fatty acid metabolism” pathways. Cancer-related
pathways were also present, including glioma, melanoma and prostate cancer. In addition, we found
significant pathways relevant in stem cell biology and tissue homeostasis, such as “signaling pathways
regulating pluripotency of stem cells” and the “Hippo signaling pathway”.

The pathways significantly enriched (p < 0.05) for the target of miRs modulated by each specific
compound (EGCG, CRC, RSV and n3-PUFA) are reported in Tables 4–7 respectively. We found KEGG
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pathways, such as “fatty acid biosynthesis” and “signaling pathways regulating pluripotency of stem
cells” significantly modulated by each compound. The visual representations of the heat maps showing
the miR-pathway interaction, for each single compound, are reported in Figures 3–6.

Table 3. Enriched KEGG pathways for predicted targets of the DD/DDR microRNAs modulated by all
four compounds.

KEGG Pathway p-Value #of Genes miRNAs

Fatty acid biosynthesis 0 4 miR-16

Fatty acid metabolism 2.23 ˆ 10-5 7 miR-16

Thyroid hormone synthesis 2.58 ˆ 10-5 5 miR-146b

Signaling pathways regulating pluripotency of stem cells 0.0002346931 24 miR-16

Glioma 0.000556152 15 miR-16 miR-34a

Glycosphingolipid biosynthesis: lacto and neolacto series 0.001440903 2 miR-34a

Hippo signaling pathway 0.00410767 24 miR-16 miR-21

Steroid hormone biosynthesis 0.009497578 1 miR-25

Ovarian steroidogenesis 0.01398717 1 miR-25

Melanoma 0.01891852 14 miR-16

Prostate cancer 0.02681897 16 miR-16

Cytokine-cytokine receptor interaction 0.03260184 11 miR-21

mTOR signaling pathway 0.03417768 13 miR-16 miR-25

Oocyte meiosis 0.03995201 16 miR-16

DIANA-miRPath v3.0 [66] was used to predict the targeted KEGG pathways by miRs involved in DD/DDR
signaling and modulated by all considered compounds (EGCG, CRC, RSV and n3-PUFAs). The target prediction
threshold was set at 0.85. p-value < 0.05. #: number.

Table 4. Enriched KEGG pathways for predicted targets of the DD/DDR microRNAs modulated
by EGCG.

KEGG Pathway p-Value # of Genes # of miRNAs

Fatty acid biosynthesis 0 4 3
ECM-receptor interaction 0 42 13
Signaling pathways regulating pluripotency of stem cells 2.44 ˆ 10´9 76 17
Amebiasis 3.53 ˆ 10´6 24 6
Proteoglycans in cancer 1.17 ˆ 10´4 117 12
Mucin type O-glycan biosynthesis 1.67 ˆ 10´2 15 10
Glioma 1.43 ˆ 10´1 39 10
TGF-β signaling pathway 1.85 ˆ 100 40 8
Fatty acid metabolism 2.28 ˆ 101 9 3
Focal adhesion 0.0002057474 110 7
PI3K-Akt signaling pathway 0.001829865 138 7
Lysine degradation 0.006232265 18 7
ErbB signaling pathway 0.02315742 45 7
Protein digestion and absorption 0.02773474 26 3
Thyroid hormone signaling pathway 0.03049808 57 8
Glycosaminoglycan biosynthesis heparan sulfate/heparin 0.05012798 9 5

DIANA-miRPath v3.0 was used to predict the targeted KEGG pathways by miRs involved in DDR signaling
and that were EGCG modulated. The target prediction threshold was set at 0.85. p-value < 0.05. #: number.
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Table 5. Enriched KEGG pathways for predicted targets of the DDR microRNAs modulated by CRC.

KEGG Pathway p-Value # of Genes # of miRNAs

Fatty acid biosynthesis 0 4 5
ECM-receptor interaction 0 19 7
Fatty acid metabolism 6.88 ˆ 10´9 8 4
Signaling pathways regulating pluripotency of stem cells 2.16 ˆ 10´5 55 9
Glioma 0.0002249224 20 5
Proteoglycans in cancer 0.0003169881 66 6
TGF-β signaling pathway 0.006985672 28 5
Prostate cancer 0.009151789 31 5
Axon guidance 0.01011865 45 3
Melanoma 0.01304415 20 4
Prolactin signaling pathway 0.01811186 28 5
Pathways in cancer 0.0206275 70 4
Glycosaminoglycan biosynthesis-heparan sulfate/heparin 0.02616968 3 5

DIANA-miRPath v3.0 was used to predict the targeted KEGG pathways by miRs involved in DDR signaling
and that were CRC modulated. The target prediction threshold was set at 0.85. p-value < 0.05. #: number.

Table 6. Enriched KEGG pathways for predicted targets of the DDR microRNAs modulated by RSV.

KEGG Pathway p-Value # of Genes # of miRNAs

Fatty acid biosynthesis 0 5 7
Fatty acid metabolism 0 16 8
Signaling pathways regulating pluripotency of stem cells 1.07 ˆ 10´6 64 13
TGF-β signaling pathway 1.39 ˆ 10´4 34 9
Proteoglycans in cancer 8.1 ˆ 10´1 70 10
Axon guidance 0.0009836851 55 6
Hippo signaling pathway 0.001005551 43 9
Mucin type O-glycan biosynthesis 0.002219981 12 8
Glycosphingolipid biosynthesis: lacto and neolacto series 0.006851962 6 7
GABAergic synapse 0.007317003 13 8
Glioma 0.03097475 21 7

DIANA-miRPath v3.0 was used to predict the targeted KEGG pathways by miRs involved in DDR signaling
and that were RSV modulated. The target prediction threshold was set at 0.85. p-value < 0.05. #: number.

Table 7. Enriched KEGG pathways for predicted DDR targets of the microRNAs modulated
by n-3-PUFAs.

KEGG Pathway p-Value # of Genes # of miRNAs

ECM-receptor interaction 0 27 4
Fatty acid biosynthesis 5.57 ˆ 10-5 4 1
Glycosphingolipid biosynthesis: lacto and neolacto series 2.21 ˆ 10-2 8 8
Mucin type O-glycan biosynthesis 0.0003249162 9 5
Proteoglycans in cancer 0.0004576113 76 8
TGF-β signaling pathway 0.001807704 27 5
Thyroid hormone synthesis 0.002952912 5 3
Amebiasis 0.00834241 24 2
Signaling pathways regulating pluripotency of stem cells 0.02548584 51 4
Glioma 0.02578235 31 6

DIANA-miRPath v3.0 was used to predict the targeted KEGG pathways by miRs involved in DDR signaling
and that were n3-PUFAs modulated. The target prediction threshold was set at 0.85. p-value < 0.05. #: number.
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Figure 2. Binary heat map of pathways related to the common microRNAs involved in DDR signaling
and modulated by all of the compounds: EGCG, CRC, RSV, n3-PUFAs. In this plot, heat map calculation
is based on binary p-values (0: not targeted, 1: targeted); all significantly targeted pathways are marked
with deep red. The plot shows miRNAs targeting similar pathways and pathways being targeted
by miRNAs.
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3. Discussion

The maintenance of genome integrity by an efficient DNA repair is of paramount importance
in the prevention of cancer, attenuation of aging processes and age-related degenerative diseases.
Effective DDR is the key mechanism providing genome stability. miRs play a critical role in the
regulation of DDR. In this in silico study, therefore, we examined the influence of dietary bioactive
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compounds on the miRs involved in DDR, which potentially may offer clues on the role of these
compounds as potential chemopreventive and antiaging (geroprotective) modalities.

The results of our analysis show a strong impact of the compounds considered on important
miRs involved in DD/DDR pathways. In particular, the analysis suggests a synergic action of all
compounds in the modulation of six miRs. Among these common miRs, we found miR-21 and miR-146.
It has recently been highlighted that miR-146, miR-155 and miR-21 have a kay role in the interplay
among DDR, cell senescence, inflammation and age-related diseases [9]. This trio of miRNAs, termed
“inflamma-miRs”, has been primarily associated with chronic, low-grade inflammation known to
characterize human aging and predisposing to age-related diseases [67]. We here find that two of
these miRs, DD/DDR-associated (miR-146 and miR-21), are modulated by all four studied compounds
and one of them, miR-155, by CRC and RSV [57]. miR-146 is one of the major miRs involved in
orchestrating immune and inflammatory signaling via modulation of NF-kB activation [9]. Both
miR-146a and miR-146b-5p have been found to target the DSB repair key protein BRCA1 [10].

miR-21 is a key modulator in many inflammatory pathways, and its aberrant expression in
numerous cancers has led to its designation as an “onco-miR” [68]. miR-21 is induced by DD, negatively
regulating G1/S transition. It also participates in the DNA damage-induced G2/M checkpoint [5].
It has been also shown that mR-21 negatively regulates Cdc25A and cell cycle progression in colon
cancer cells [69]. In addition, miR-21 is upregulated during hepatitis C virus infection and negatively
regulates IFN-α signaling through MyD88 and IRAK1; it may thus be a potential therapeutic target
for antiviral intervention [70]. Recent observations suggest that miR-21 in cooperation with miR-145
(modulated by n3-PUFAs) play critical roles in the regulation of colon cancer stem cells [71]. miR-155
has been reported to regulate inflammation and immune responses [72]. miR-155 may have different
functions in innate and adaptive immune responses, and the systemic diffusion of this DDR/-related
miR may have either adverse or beneficial effects, depending on overall senescence/immunological
host condition [9]. In DDR network, miR-155 modulates cell cycle after DD by targeting key genes
involved in cell cycle control, such as WEE1 [73]. miR-155 has been shown to control the expression of
TRF1, the protein that negatively regulates telomere length [74]. Indeed, the TRF1 gene is known to
be a target of miR-155 [75]. Telomere length may also be regulated by miR-34a [76], which is in turn
modulated by all four compounds, as demonstrated by our in silico analysis. miR-34b and miR-34c
are also modulated by the three and two studied compounds, respectively. The miR-34 family, is a
direct transcriptional target of p53, whose induction by DD and oncogenic stress pervades in diverse
aspects of the DD response pathway [27]. Noteworthy, the compounds being evaluated here modulate
members of the miR-17/92 cluster and miR-106a/b clusters (DDR modulated), having an important
role in cancer and other numerous diseases [77]. In particular, our analysis reveals that RSV is able to
modulate all of the miRs of these tree important clusters.

Our previous studies have demonstrated that RSV decreased the level of constitutive DD
signaling by the reduced expression of γH2AX in proliferating A549, TK6 and WI-38 cells and in
mitogenically-stimulated human lymphocytes [78]. The reduction of γ-H2AX was paralleled by a drop
in the level of endogenous ROS and a decline in mTOR/S6K1 signaling [79]. H2AX is the initial sensor
protein in the DSB response that can detect and mark DD by its phosphorylated form (γ-H2AX) [80,81].
H2AX is a target of miR-24 [80]. The present analysis suggests that RSV, as well as CRC and EGCG
might regulate γH2AX expression by miR-24 mediation.

The DIANA program allowed us to investigate the common pathways associated with miRs.
Among the most popular pathways involved in DD and DDR influenced by the compounds considered
in this study, we found the fatty acids’ biosynthesis pathway and fatty acids’ metabolism. Alterations in
fatty acid metabolism in cancer cells have received less attention, but are increasingly being recognized.
Indeed, some studies have suggested that the DNA damage response is involved in the regulation of
metabolic homeostasis. DNA damage could impair metabolic organ functions by causing cell death
or senescence [82]. There is a strong relationship between DD and energy metabolism [83], and an
implication for its role in tumorigenesis has been indicated. p53, the key factor in the DD/DDR network,
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has been reported to regulate fatty acid oxidation [84], and genes involved in fatty acid metabolism
are regulated by p53 in different cell types and in response to both oncogenic stress and DD [85].
mTOR holds also an important role in lipid biosynthesis and metabolism [86,87] demonstrating a
cross-talk among these pathways, and this fact has a significant meaning in cancerogenesis and
chemoprevention. For example, by downregulating mTOR signaling and energy metabolism, it is
possible to suppress the malignant phenotype of colorectal cancer cells [88,89]. Indeed, fatty acid
synthase is a potential therapeutic target in cancer. There is strong evidence that constitutive mTOR
signaling is the driving force of cellular and organismal aging and induction of senescence [90,91].
Extracellular matrix (ECM)-receptor interaction is also shown to be strongly involved in the DD/DDR
and compounds interaction (EGCG, n3-PUFA, CRC). This is of interest in light of the evidence that
ECM proteins are involved in cancer progression and outcome. The initiation of cell transformation
is generally associated with genetic alterations in normal cells that lead to the loss of intercellular-
and/or extracellular-matrix (ECM)-mediated cell adhesion [92]. There is a connection between ECM
proteins, such integrin signaling and DNA repair [93]. There is also strong evidence that hyaluronic
acid (HA; hyaluronate), the key component of ECM, by neutralizing the ROS, is reducing the induction
of DNA damage by endogenous and exogenous oxidants [94–96]. Particularly interesting is the
role of HA, which is a large constituent of stem cells’ niche, in protecting the integrity of genome
of stem cells against reactive oxidants [95]. Our in silico results evidence that signaling regulating
the pluripotency of stem cells pathway is clearly targeted by many miRs selected in this study, as
evidenced by the heat maps of specific compounds. miRs represent an important layer of regulation
for stem cell self-renewal and differentiation [97,98]. Among DDR/compound-modulated miRs, in
our analysis, let-7, miR-302 and miR-17-92 have been found in previous studies as regulators of
cellular pluripotency [99]. Signaling regulating the pluripotency of stem cells converges towards
the activation of the transcriptional network and of many different pathways, which often show
cross-talk in the determination of stem cell function. Indeed, FOXO, e.g., transcription factors, is
required for DNA damage-induced growth arrest checkpoints [100], and as a further example, the
mTOR pathway has been shown to be a major regulator of both ROS levels and autophagy in human
stem cells [101]. The life-long persistence of stem cells in the body makes them particularly susceptible
to the accumulation of cellular damage, which ultimately can lead to cell death, senescence or loss
of regenerative function. Indeed, stem cells in many tissues have been found to undergo profound
changes with age, exhibiting blunted responsiveness to tissue injury, dysregulation of proliferative
activities and declining functional capacities. These changes translate into reduced effectiveness of cell
replacement and tissue regeneration in aged organisms [102]. Noteworthy, miR-146a/b and miR-195,
which we found modulated by all compounds and by CRC, respectively, have been reported as
age-induced miRNAs involved in stem cell senescence [103]. These recent findings have demonstrated
that silencing miR-195 reverses the senescence clock in aged stem cells by telomerase reactivation. The
regulation of telomere length performed by the above-mentioned miR-155 may also have an important
role in the cancer stem cell fate and cancer tissue homeostasis. miR-155 is upregulated in many cancers
and can promote cancer stem cell phenotypes in liver [104]. RSV has been demonstrated to be able to
decrease its levels, supporting our prediction analysis [57].

The availability of nutritional agents that can target specific miRs regulating stem cells’ function
can improve regenerative potential in the body and, finally, counteract aging and prevent diseases,
such as cancer.

It must be considered that most of the literature here analyzed refers to experimental research
carried out on in vitro models. The results indicated that exposure time and concentrations of
compounds can differently affect miRNA expression in different human cells. In addition another
important issue evident in the literature [41] is the poor bioavailability of phytochemicals due to their
metabolism, absorption and, consequently, the fact that most phytochemical compounds reach the
targeted sites at sub-therapeutic concentrations [105]. These observations pave the way for in vivo
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dietary intervention studies and clinical trials focused on setting the appropriate dosage of the bioactive
compounds that can effectively affect the miRs’ expression in humans.

The comparison of pathways identified, with our in silico analysis, to those identified
experimentally in the study examples utilized here interestingly demonstrated that new pathways
were evidenced from our prediction. Even more interesting, however, is that some of our predicted
pathways were indeed found as directly implicated in some cancer studies and modulated by the
compounds here considered.

The fact that experimental literature results have found that pathways, such as, for example, “fatty
acid biosynthesis” and “fatty acid metabolism”, were actually affected by the compounds taken into
account in this paper validated our prediction. This positive inter-comparison proves that the pathways
computationally found by us were, indeed, the same found experimentally involved in some cancer
models and in some senescence studies, confirming the validity of our prediction study. For examples,
in breast and lung cancer cells, EGCG affected fatty acid metabolism [106,107]. Resveratrol was found
to suppress cancer cell proliferation by inhibiting the fatty acid synthase signaling pathway [108].
Curcumin, as well, induces apoptosis, inhibiting intracellular fatty acid synthase in human breast
cancer [109]. Clinical studies corroborate these findings [110], and trials were also carried out [111].
Resveratrol and EGCG are also found to improve the functional activity of the membrane lipids in
aged liver models by influencing lipid composition and metabolism [112,113].

Presently, miRs have been already found to be modulated by the compounds here considered. On
the other hand, other studies found that some of the pathways here evidenced are modulated by our
compounds, but we provide here the link between miRs’ expression and the pathways’ modulation by
the respective compounds. Thus, the importance of our results consists, indeed, of the possibility of
detecting experimentally the link between miRs’ expression and pathways’ modulation.

Some authors suggested an interplay among miRNA, DD/DDR, specific signaling pathways
and cancer promotion and invasion [114,115], and bioactive compounds play an important role in
this interplay.

Taken together, the clinical relevance of such observations could be related to the bioactive
compounds’ chemopreventive value in some type of tumors, as for example in breast cancers or lung
cancers, where enough evidence corroborates this hypothesis.

In conclusion, since DDR and these pathways are strongly related to aging and carcinogenesis,
the in silico results of our study suggest that monitoring the induction of specific miRs may provide
the means to assess the antiaging and chemopreventive properties of particular bioactive compounds.
Furthermore, the results of this in silico study indicate the most important pathways potentially
modulated by dietary compounds and provide a framework for the generation of new strategies to
design experimental studies and, finally, new anti-cancer and anti-aging therapies.

4. Materials and Methods

4.1. Search Strategy and Selection Criteria

A literature search was performed using PubMed databases to identify miRNAs with experimental
evidence of involvement in DD and DDR (last accessed on 15 January 2016). The following keywords
were used: “microRNA” and “DNA damage”. Due to the vast amount of literature, we selected in this
paper the most significant and extensive reviews. We subsequently replaced “DNA damage” with
“DNA damage response” or with “DNA damage repair” (see Table 1 in the Results).

Regarding miRs and the specific compounds considered in this paper, we did additional searches
using “microRNA” and “epigallocatechin gallate” as key terms, and we substituted “epigallocatechin
gallate” with “curcumin”, “resveratrol” or “n3-PUFA”. The literature search was limited to reports in
English and in humans (see Table 2 in the Results).

The miRNAs involved in the DD/DDR network (from Table 1) and modulated by bioactive
compounds (from Table 2) were selected to build the Venn diagram (Figure 1).
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4.2. In Silico Analysis

All miRs used in the in silico analysis were selected as common between Tables 1 and 2 and
reported in the Venn diagram (Figure 1).

In Table 3 and Figure 2, the miRs found modulated by all four compounds were used (red in
Figure 1). In Tables 4–7 and in Figures 3–6 the miRs modulated by a single compound were used.

To identify molecular pathways potentially altered by the expression of specific miRNAs selected
from the literature search, the online software DIANA-mirPathv3 [26] was used. The software has
the capacity to analyze the combinatorial effect of different miRNAs on Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways. DIANA-mirPathv3 combines the gene targets of the selected miRs
into a superset (union) performing the enrichment analysis and calculating the significance levels
(p-values) between each miRNA and every pathway. The p-value is a measure of the association
between a selected gene from the list of pathways. In pathway analysis, generally, p-values higher
than 0.05 indicate that the association is not statistically significant, and the pathway could be rejected.
In our analyses of pathways prediction, miR-gene interactions are derived from the in silico miRNA
target prediction algorithms: DIANA-microT-CDS. The settings utilized were: p-value threshold of
0.05; DIANA-microT-CDS threshold of 0.85; merging method: pathways union. Fisher’s method was
used to combine the results of more than one independent test bearing on the same hypothesis. All of
the results were corrected in the combined enrichment analysis for multiple hypotheses testing, by
applying Benjamini and Hochberg’s algorithm [116].

The results of the miR-pathway interaction are presented as “heat maps” (graphical
representations of data where values in a matrix are represented as colors). They enable the
visualization of a very large number of variables. The software DIANA-mirPathv3 utilizes the
hierarchical clustering results on both axes (pathways and miRNAs), in order to construct the heat
map visualization.
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