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RESEARCH Open Access

Atlas-based analysis of cardiac shape and
function: correction of regional shape bias due to
imaging protocol for population studies
Pau Medrano-Gracia1, Brett R Cowan1, David A Bluemke2, J Paul Finn3, Alan H Kadish4, Daniel C Lee4,
Joao AC Lima5, Avan Suinesiaputra1 and Alistair A Young1*

Abstract

Background: Cardiovascular imaging studies generate a wealth of data which is typically used only for individual
study endpoints. By pooling data from multiple sources, quantitative comparisons can be made of regional wall
motion abnormalities between different cohorts, enabling reuse of valuable data. Atlas-based analysis provides
precise quantification of shape and motion differences between disease groups and normal subjects. However,
subtle shape differences may arise due to differences in imaging protocol between studies.

Methods: A mathematical model describing regional wall motion and shape was used to establish a coordinate
system registered to the cardiac anatomy. The atlas was applied to data contributed to the Cardiac Atlas Project
from two independent studies which used different imaging protocols: steady state free precession (SSFP) and
gradient recalled echo (GRE) cardiovascular magnetic resonance (CMR). Shape bias due to imaging protocol was
corrected using an atlas-based transformation which was generated from a set of 46 volunteers who were imaged
with both protocols.

Results: Shape bias between GRE and SSFP was regionally variable, and was effectively removed using the atlas-based
transformation. Global mass and volume bias was also corrected by this method. Regional shape differences between
cohorts were more statistically significant after removing regional artifacts due to imaging protocol bias.

Conclusions: Bias arising from imaging protocol can be both global and regional in nature, and is effectively corrected
using an atlas-based transformation, enabling direct comparison of regional wall motion abnormalities between
cohorts acquired in separate studies.

Keywords: Cardiovascular magnetic resonance, Atlas, Bias correction

Background
Cardiovascular imaging studies are becoming increas-
ingly common, both to determine surrogate endpoints in
clinical trials [1] and to investigate epidemiological man-
ifestations of cardiac disease [2,3]. Although great effort
and expense is usually expended on obtaining excellent
quality cardiovascular imaging data, the images are
typically used only for study-specific outcomes, and are
unavailable for wider use. By pooling image data across
multiple studies, valuable data can be re-used and

combined in novel ways. In the brain, imaging studies
have been used extensively in combination with atlas-
based analysis methods in order to demonstrate mor-
phological changes due to disease [4,5]. Computational,
structural and functional atlases can be generated which
map related scientific information to spatial coordinates.
Recently, these methods have begun to be applied to the
analysis of cardiac shape and motion [6]. For example,
Lewandowski et al. used an atlas-based analysis to
characterize clinically important shape changes between
individuals born preterm and term-born controls [7].
These methods provide novel quantitative information
which can be obtained retrospectively and applied across
multiple studies for comparisons between populations.
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However, application of these methods to multiple
studies with different imaging protocols is problematic
due to the variety of cardiovascular imaging modalities
and methods employed, and the lack of tools with which
data can be meaningfully pooled into large multi-study
meta-analyses. Requiring all studies to use a common
imaging protocol is too restrictive, therefore a posteriori
corrections must be made to quantify and remove these
sources of bias. If corrections could be made on a
regional basis which account for protocol bias, data from
clinical studies obtained using different methodologies
or even modalities could be compared or combined.
The Cardiac Atlas Project is a worldwide consortium

seeking to pool cardiac imaging data in a standardized
manner from multiple studies in order to facilitate meta-
analyses [8]. Data are de-identified in a HIPAA compliant
manner, annotated using standard ontological schema,
stored in a web-accessible picture archiving and commu-
nication system (PACS) database, and analyzed using
atlas-based techniques [8]. Approximately 3000 cardiovas-
cular magnetic resonance (CMR) cases have been contrib-
uted to date and the data are available on request from
the website. Two major studies which have contributed
data to the CAP database are:

i. the Multi-Ethnic Study of Atherosclerosis (MESA)
[2], comprising asymptomatic volunteers imaged
using gradient recalled echo (GRE), and

ii. the Defibrillators to Reduce Risk by Magnetic
Resonance Imaging Evaluation (DETERMINE) study
[9], comprising patients with a history of myocardial
infarction imaged using steady state free precession
(SSFP).

Comparison of statistical shape differences between
these two cohorts is clinically interesting because precise
shape differences between sub-clinical and clinical popu-
lations could be quantified. However, such comparisons
require compensation of any bias arising due to the
different imaging protocols: in this case GRE and SSFP.
It is well known that, globally, SSFP gives rise to larger

estimates of left ventricle (LV) cavity volume and smaller
estimates of LV mass than GRE [10]. However, the
regional effects of these two imaging protocols on statis-
tical shape representations of the heart are unknown.
Image contrast between blood and myocardium in GRE
images is highly influenced by local blood in-flow effects,
whereas SSFP images have reduced dependence on flow
due to the intrinsic T1/T2 contrast. We therefore hypo-
thesized that regional differences in shape may be identi-
fied between GRE and SSFP imaging protocols.
In this paper, we propose an atlas-based method for

the correction of shape bias arising from imaging proto-
col. We investigate whether both regional and global

bias can be corrected, and whether this correction can
improve the detection of statistical differences in regional
shape and motion between cohorts.

Methods
Transformation from GRE to SSFP
In order to correct for the effects of GRE vs. SSFP
imaging, we generated a transformation which corrected
for bias on a local level (Figure 1). The aim of this shape
bias correction is to remove systematic differences in
shape over a population, so that on average the GRE-
derived heart shapes appear to have been produced by
SSFP imaging.
To generate the transformation, 46 healthy volunteers

(26 males aged 42.5 ± 11.7 years and 20 females aged
37.3 ± 13.9 years) were scanned with both GRE and SSFP
protocols on a Siemens 1.5 T scanner (Siemens Medical
Solutions, Erlangen, Germany). GRE imaging parameters
were: echo time 3.54 ms, repetition time 66.87 ms, flip
angle 20°, matrix size 256×144, slice thickness 6 mm
(0 mm gap between adjacent slices), flow compensation,
and FOV 360×360 cm. SSFP imaging parameters were:
echo time 1.41 ms, repetition time 60.66 ms, flip angle
77°, matrix size 256×144, slice thickness 6 mm (0 mm
gap between adjacent slices), and FOV 360×360 cm.

The shape atlas
Guide-point modeling [11] was used to interactively
customize a time-varying 3D finite element model of the
LV to fit each subject’s images using custom software
(CIM version 6.0, University of Auckland, New Zealand).
The model comprised 16 bicubic finite elements with C1

continuity, defined in a prolate spheroidal coordinate
system. This enabled an efficient representation of the
shape of the left ventricle as a radial function of two
angular coordinates, with only 215 parameters (see [11,12]
for details). Briefly, the model was interactively fitted by
least-squares optimization to “guide points” provided by
the analyst, as well as computer-generated data points
calculated from the image using an edge detection
algorithm. Automatic feature tracking was used to track
points throughout the cardiac cycle using non-rigid regis-
tration in both short and long axis images [12]. Informa-
tion from all slices and frames was integrated into the
time-varying 3D model to provide a 3D representation for
the beating heart surfaces (endocardium and epicardium).
The model was registered to each case using fiducial
landmarks which were manually defined at the hinge
points of the mitral valve on the long axis images, and
at the insertions of the right ventricular free wall into
the inter-ventricular septum. These were used to define
a standard coordinate system which mapped the pos-
ition of the model shape parameters to consistent posi-
tions registered to the anatomy of each heart. This
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method has been previously validated against autopsy
LV mass, in patients against manually drawn contours
and in healthy volunteers against flow-derived measure-
ments of cardiac output [11].
The finite element coordinates were used to provide

the atlas coordinates of the LV: each point is assumed
to be in approximately in the same anatomical loca-
tion in every heart [13]. Shape parameters of the atlas
were provided by the finite element control points for
each of the epicardial and endocardial surfaces. These
points were evenly spaced around the heart and intui-
tively control the position of the model locally at
each point. Figure 2 shows the spatial distribution of
the shape parameters. This parametric representation
for the heart also enabled the surfaces to be sampled
at arbitrary resolution anywhere in the heart (in this
paper we used 1,089 points for each surface) for stat-
istical shape comparisons.

Shape correction
The bias correction process involved two steps (Figure 3):
a learning step in which the transformation was gener-
ated, and an application step in which it was applied.
Firstly, the SSFP finite element model for each volun-

teer was re-parameterized using the same coordinate

system as the GRE model (Figure 3). This step was ne-
cessary since the transformation was designed to be ap-
plied to the GRE parameterization. Secondly, for each
shape parameter, the mean and standard deviation of the
distribution of locations were calculated with respect to
the GRE cases and the SSFP cases.
We assumed that the parameters would be normally

distributed due to the central limit theorem, since they
arise from the combination of a number of processes
(including age, gender, image formation, analysis). A test
for normality confirmed that the parameter distribu-
tions could be approximated by Gaussians; of all the
parameter distributions, 88% passed Anderson’s test of
normality [14], which indicates that they were likely to
have been derived from normal processes (with an
α-level of 5%). The parameters of the Gaussian distribu-
tions were estimated by means of maximum likelihood
[15]. Examples of these distributions are shown in
Figure 4.
For each shape parameter, the transformation T(GRE)

was estimated from the GRE and SSFP training models
(N = 46) as shown in Figure 3. The transformation could
be then applied to a separate set of GRE datasets GRE’
to provide bias-corrected SSFP datasets SSFP’ (Figure 3).
The transformation T(GRE) was defined for each shape

ED ES

SA LA SA LA

G
R

E
S

S
F

P

Figure 1 Image and shape differences for a volunteer imaged both with GRE (top), and SSFP (bottom), for the same short-axis (SA),
long-axis (LA) planes at end diastole (ED) and end systole (ES). Green and blue contours and markers show the model’s endocardial and
epicardial boundaries and guide points, respectively. Light color markers denote fiducial landmarks (right ventricular free wall insertion points,
mitral valve hinge points) used to define the location of the model shape parameters in consistent positions relative to the anatomy of the heart.
Papillary muscles are highlighted in red in the SSFP SA slice at ES.
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parameter by a z-score correction between the two
populations:

SSFP0≡T GRE0ð Þ ¼ GRE0−μGRE

σGRE

� �
σSSFP þ μSSFP ð1Þ

Given the four Gaussian-distribution parameters esti-
mated by maximum likelihood (mean and standard devi-
ation of the GRE and SSFP training sets, namely (μGRE,
σGRE) and (μSSFP, σSSFP) respectively) we can estimate any
SSFP value from its corresponding GRE value using
Eqn 1.

A variety of different types of transformation were
investigated and the results are summarized in the
Appendix. Eqn 1 was the only transform which mini-
mized both the residual surface and volume bias of the
models in our experiments.

Validation
Validation was performed by means of leave-one-out ex-
periments, in which the transformation was trained
using N = 45 cases, and errors in surface position and
volume calculated for the remaining case. This process
was repeated 46 times, leaving each case out in turn,
and the resulting errors averaged.

GRE

SSFP

Projection onto 
same coordinate 

system

ML learning 
of T(GRE)

T(GRE)

GRE

SSFP

GRE’ SSFP’

1.
 L

ea
rn

in
g

2.
 A

pp
lic

at
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n

Figure 3 Signal model framework for learning and application. The transformation T(GRE) was learned from paired sets of N models with
both GRE and SSFP versions, using maximum likelihood (ML). The transformation was then applied to separate datasets GRE’ to produce SSFP
estimates SSFP’.

a b
Figure 2 Mathematical shape model. a) 3D display of short and long axis images with the model embedded (CAP visualization tool available
from www.cardiacatlas.org). LV shape model shown as wire-frame. b) Finite element description of left ventricular shape. Model parameters are
shown as yellow points (endocardial parameters not shown). Element boundaries shown as lines; endocardial surface shaded green; epicardial
surface shaded red and transparent.
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Error analysis was performed in the leave-one-out ex-
periments to examine both global volume errors and
local surface bias errors. Firstly, we estimated the mass
and volume of the transformed LV models, in compari-
son with the original SSFP mass and volumes, in order
to confirm that the local correction of shape parameters
also corrected global clinical indices of mass and volume
[10]. Secondly, the local error in each surface position
was estimated by computing the residual bias between
corresponding points in the estimated and measured
SSFP surface, using a surface sampling of 1,089 points.

Application
To evaluate the effects of shape bias removal in a typical
application, we compared 300 cases from MESA with
105 cases from DETERMINE obtained from the CAP
database. All cases were de-identified and contributed
to the CAP database with approval from the local
Institutional Review Boards. For the DETERMINE
cases, two expert observers visually scored areas of late
gadolinium enhancement (LGE) by consensus [16], on
each of the 17 AHA regions [17]. LGE scores were cate-
gorized into 5 grades (0–4) according to the transmural
thickness of enhancement on the LGE scan: 0% (0),
1–25% (1), 26–50% (2), 51–75% (3) and 76–100% (4) of
the wall thickness. The multivariate Hotelling’s T2 test
(assuming unequal variance) was used to test for
regional shape differences at end-diastole (ED) between
DETERMINE segments with an LGE score of 2 or
higher and the corresponding segments from the 300
MESA controls (which were assigned a label of 0).
These differences were quantified with and without the
correction of shape bias from GRE to SSFP in the MESA

control cases. In addition, average shape differences
were visualized between a subcohort of DETERMINE
patients with infero-lateral infarction (N = 27) and the
300 MESA cases using the Hotelling’s T2 test (the exten-
sion of the standard t-test to multiple dimensions) on a
point by point basis.

Statistics
Different regression models were examined using R v.
2.11 (R Development Core Team, 2011) to find a
mapping which minimized both the shape and volume
bias (see Appendix).
The Hotelling’s T2 statistic was used to evaluate shape

changes in each AHA segment between cohorts [18].

Results
Shape and volume bias
Figure 5 shows the average differences between GRE
and SSFP at ED and ES for the 46 volunteers. The most
significant regional differences appear in the apical
endocardium and around the papillary muscles. Also
some differences arise near the basal plane, especially at
ES. These differences are physically reasonable since
GRE contrast is dependent on blood flow to a greater
extent than SSFP, leading to possible regional differ-
ences where apical trabeculation or papillary muscles
disrupt the local blood flow [10]. Similarly, the basal dif-
ferences are likely due to differences in the appearance of
the long axis images around the mitral valve (see Figure 1
for image examples). Table 1 reports the mean and
standard deviation of the computed volumes for these
experiments. Left-ventricular mass (LVM) was calculated
at ED as the myocardial volume times 1.05 g/ml.
The Table 1 volume errors show that the leave-one-out

corrected volumes agree with the measured SSFP volumes
with an absolute average bias of ≤ 1 ml. Table 1 also shows
that the local surface biases were also greatly reduced.

Visualization of regional shape abnormalities
The transformation from GRE to SSFP shape models
was applied to 300 asymptomatic volunteers from the
MESA (GRE) study in order to make direct comparisons
with 105 patients with myocardial infarction from the
DETERMINE (SSFP) study.
Figure 6 visualizes the shape differences at ED with and

without the bias correction by means of Hotelling’s T^2
statistic (9) in those DETERMINE cases with infero-lateral
infarction (N = 27). This test compares mean and variance
of the surface points in a multi-dimensional extension of
the Student’s t-test. If the bias is not corrected, differences
in shape around the papillary muscles (both anterior
and inferior) appear to show differences due to infarc-
tion, whereas after correction this apparent abnormality
is removed.

Figure 4 Sample distribution of a single model parameter for
N = 46 cases. The blue distribution corresponds to the GRE protocol
and the yellow to SSFP. Both passed Anderson’s test of normality
with an α-level of 5%. Maximum likelihood Gaussian distributions are
also shown.
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Before correction

GRE vs. SSFP (ED) GRE vs. SSFP (ES)

After correction

Figure 5 Average difference due to protocol bias in the LV at ED (left) and ES (right). The top two figures show the bias before correction
and the bottom ones afterwards. The arrow points from the center of the blood pool toward the septum.

Table 1 Protocol bias

EDV (ml) ESV (ml) LVM (g)

GRE 126.2 ± 27.0 52.8 ± 12.6 145.2 ± 33.2

SSFP 134.1 ± 28.3 52.8 ± 13.7 131.1 ± 31.6

Estimated SSFP 133.7 ± 29.6 53.2 ± 14.4 130.1 ± 30.9

Volume error pre correction −7.9 ± 12.3 0.0 ± 8.2 14.1 ± 10.5

Volume error post correction −0.4 ± 14.6 0.4 ± 10.4 −1.1 ± 10.8

ED RMS (mm) ES RMS (mm)

Surface bias pre correction 0.75 1.39

Surface bias post correction 0.06 0.07

Cavity volume at end diastole (EDV), end systole (ESV), myocardium mass (LVM) and leave-one-out errors in volume and surface root mean squared error (RMS)
for the indicated sets (N = 46).
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Quantification of regional shape differences in LGE
Regional differences in shape were examined using the
AHA 17 segment model. Each finite element model
was sampled uniformly by 200 points in each AHA seg-
ment. Hotelling’s T2 was then applied on a regional
basis to test for statistically significant shape changes in
those segments with >50% transmural LGE score.
Figure 7 shows that after correction, the significance of

the separation of the two populations tended to be greater,
i.e. the distribution of p-values of the post-transformed
population for abnormal cases was more significant, on

average by a power of ten, both at ED and ES. This implies
that, although the point distributions have had some dif-
ferences removed by the bias correction, the statistical sep-
aration between patient cohorts was actually improved.
This result shows that bias correction can improve the stat-
istical significance of regional shape differences between
cohorts using an atlas-based analysis.

Discussion and conclusions
Atlas-based analysis of heart shape and function shows
promise in providing new clinical information about the

a  b

300

0

Figure 6 Application of shape correction to the analysis of myocardial infarction. a) Hotelling’s T2 for the infero-lateral DETERMINE
subcohort (N = 27) compared to the MESA cases (N = 300) without any protocol-bias correction. b) Hotelling’s T2 statistic after the protocol-bias
correction. Red shows most significant differences while blue represents least significant differences. The papillary muscle significant difference
due to protocol bias disappears after correction. Viewpoint is from the lateral wall: the arrow points from the center of the blood pool toward
the septum.

Figure 7 Distribution of Hotelling’s p-values between DETERMINE segments with >50% transmural LGE, and MESA cases for 2,500
evenly-sampled points (in logarithmic scale). The box-plots show how, at both ED and ES, the differences become more significant after
correction. The 25th percentile, the median and the 75th percentile are drawn as boxes and the mean is represented by a square.
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degree and progression of heart disease [6,7]. The data
and software components used in the Cardiac Atlas
Project, including the database infrastructure and visua-
lization tool, are open-source and available for down-
load at the website (www.cardiacatlas.org). Atlas-based
methods establish a common coordinate system [19]
which can be used to describe statistical shape changes.
These methods create a template of the anatomy which
is then warped to each case [20-22]. In this study we
have used a finite element computational model of the
left ventricle which was mapped to the anatomy of each
case [12]. A similar map was used to guide biopsy sam-
ples with an accuracy of 0.3 ± 3.7 mm [13]. However,
bias arising from different image protocols will lead to
systematic bias in the shape parameters which will con-
found analysis of pathological variation. To our know-
ledge, this is the first attempt at mapping and correcting
the protocol effect across a population of shape models
at the local parameter level. The bias between GRE and
SSFP imaging protocol was found to be regional in
nature, associated with regional differences in flow
enhancement. A z-score correction method was used to
transform regional shape parameters. This transform-
ation was the only one examined which corrected both
local surface bias and global bias in mass and volume.
The bias correction enabled visualization of regional wall
shape abnormalities due to myocardial infarction to be
corrected for imaging protocol on a regional basis.
Despite the reduction of false positives, the method
enabled better characterization of the segmental shape
differences between segments with and without scar, as
defined by >50% transmural extent by LGE. Note that

this method corrects average error across all cases
(at the population level) —rather than absolute error for
each model— since the mapping is designed to correct
statistical bias only. The method does not reduce the
variation of shape present in a population.
In order to determine how many cases are required in

the training set to determine the transformation, we
performed additional validation experiments by leaving
out more cases in the training step. Figure 8 shows the
results of these experiments, showing that 39 cases are
sufficient for stable and robust estimation of the shape
bias correction transform in this application, with an
average residual surface error of less than 0.1 mm. To
quantify the effect of inter-observer variation on the bias
transformation, the shape bias was recalculated using
guide-point models obtained by another observer (both
SSFP and GRE). Fewer than 0.01% of points reported
significant differences from the first analysis (p < 0.05).
This suggests that the regional differences are robust to
observer variation in the placement of surface boundar-
ies on the images.
Limitations of this study include the use of healthy

volunteers to train the transformation, thus limiting the
transformation to relatively normal heart shapes. Since
we applied the transformation only to asymptomatic vol-
unteers from MESA, we do not expect a significant error
due to this effect in the current application. However, it
is not known whether the transformation derived from
this dataset will show the same degree of robustness
when applied to patients with disease, such as hyperten-
sive hypertrophy where the wall becomes greatly thick-
ened, or heart failure where slow moving blood with
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Figure 8 Residual surface error (mm) for different number of cases in the training dataset.
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GRE imaging in poor heart function may accentuate dif-
ferences. Age may also affect the transformation, but we
expect these effects to be much less than the effect of
imaging protocol. Another limitation is the requirement
for a training group examined with both imaging proto-
cols. Further work is required to develop transformations
without the need for such a training set. This might in-
volve simulating images using different protocols [23].
Our method is not limited to the application described

here (SSFP and GRE), and can be applied in a variety of
different applications. For example, inter-observer bias
arises when images are analyzed by different readers
who have different interpretations of contour location.
Also different clinical studies use core laboratories which
vary in analysis protocol and software. If Analysis A and
Analysis B use different readers/protocols/software, this
bias must be corrected before results can be pooled in

any meta-analysis. By analyzing a subset of cases from
both A and B with Analysis C, the transforms can be
learned to map A to C and B to C. All studies can then
be mapped to a common standard, thereby removing
this source of bias. In addition, this method can be used
to compare results from different imaging modalities,
e.g. CT vs CMR.

Appendix
Comparison of transformations
A number of different transformation methods were
examined. These included (parameter estimation repre-
sented as ŷ = f(x), where x refers to GRE location and ŷ
to the estimated SSFP location):

1. Intercept only (zero slope): ŷ = c, where c is a
constant estimated separately for each parameter.

Table 2 Surface and volume errors for the regression models

Model ED ES LVM

Intercept only

Estimated SSFP 130.7 ± 33.9 ml 49.2 ± 12.7 ml 132.8 ± 34.4 g

Residual volume error −3.4 ± 26.3 ml −3.7 ± 11.3 ml 1.7 ± 26.5 g

Residual surface error 0.14 mm 0.26 mm

Slope and intercept

Estimated SSFP 130.3 ± 27.1 ml 49.3 ± 11.0 ml 131.3 ± 29.6 g

Residual volume error −3.8 ± 13.2 ml −3.6 ± 8.0 ml 0.1 ± 12.2 g

Residual surface error 0.10 mm 0.20 mm

Slope and forced origin

Estimated SSFP 130.5 ± 27.7 ml 49.2 ± 11.5 ml 131.1 ± 30.3 g

Residual volume error −3.7 ± 12.6 ml −3.7 ± 8.2 ml 0.0 ± 10.3 g

Residual surface error 0.13 mm 0.27 mm

Forced identity and intercept

Estimated SSFP 132.0 ± 28.0 ml 50.6 ± 11.9 ml 131.5 ± 30.3 g

Residual volume error −2.1 ± 12.6 ml −2.2 ± 8.2 ml 0.3 ± 10.3 g

Residual surface error 0.08 mm 0.16 mm

Maximum likelihood estimated

Estimated SSFP 133.7 ± 29.6 ml 53.2 ± 14.4 ml 130.1 ± 30.9 g

Residual volume error −0.4 ± 14.6 ml 0.4 ± 10.4 ml −1.1 ± 10.8 g

Residual surface error 0.06 mm 0.07 mm

Nodal-grouped parameters

Estimated SSFP 130.5 ± 28.0 ml 49.5 ± 11.7 ml 130.2 ± 27.4 g

Residual volume error −3.6 ± 12.6 ml −3.3 ± 7.7 ml −0.9 ± 13.2 g

Residual surface error 0.09 mm 0.21 mm

Pseudo-inverse global

Estimated SSFP 137.9 ± 33.1 ml 54.4 ± 15.3 ml 130.1 ± 32.7 g

Residual volume error 3.8 ± 16.3 ml 1.6 ± 12.7 ml −1.2 ± 19.0 g

Residual surface error 0.28 mm 0.34 mm

For original GRE and SSFP volumes see Table 1.
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2. Slope and intercept: ŷ =m x + c where m and c are
constants estimated separately for each parameter.

3. Slope only (zero intercept): ŷ =m x, where m is a
constant estimated separately for each parameter.

4. Forced identity slope and varying intercept: ŷ = x + c
where c is a constant estimated separately for each
parameter.

5. Maximum likelihood estimation (z-score correction)
as defined in Equation 1.

6. Multivariate approach with grouped parameters: ŷ =
Ax + C where A is a 4 × 4 constant matrix and C is
a four element constant vector, estimated for each
group of 4 shape parameters around each node of
the finite element model. This enables modeling of
covariances around each node.

7. Pseudo-inverse global transformation matrix: ŷ = Px
where P is the pseudo-inverse of the data matrix
from set X. In theory this enables covariances
between all shape parameters.

All these models can be interpreted as different design
matrices. The first four are the classic univariate (one trans-
form per parameter, with each parameter treated independ-
ently) linear models. Case 5 is also univariate. In case 6,
parameters were grouped by finite-element nodes, four pa-
rameters per node, which were related between models by
a 4 × 4 matrix. In case 7, the design matrix was computed
by use of the pseudo-inverse (X+) matrix of the data matrix
X from set X. Note that in this last approach, the number
of coefficients is larger than the available data points (215
vs. 46) hence the mapping matrix is unstructured and noisy;
however, we still include it for comparison purposes.
As can be seen in Table 2, case 5 reported the best re-

sults and it was therefore chosen as the reference regres-
sion model applied in all further work.
Table 2 shows the results of the various mapping

methods tested in terms of volume, mass and surface
error. As expected, all methods reduced the surface bias
to some degree and all surface errors are low in terms of
clinical requirements. However, the MLE method was
best in terms of both residual surface bias and mass and
volume estimates.
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