Touro Scholar

NYMC Faculty Posters

Faculty

Spring 3-16-2017

Are Gene Polymorphisms of Fibroblast Growth Factor 10 Associated with Patent Ductus Arteriosus and Bronchopulmonary Dysplasia in Extremely Low Birth Weight Infants?

Shaili Amatya New York Medical College

Asma Amin New York Medical College

Umesh Paudel New York Medical College

Lance A. Parton New York Medical College

Follow this and additional works at: https://touroscholar.touro.edu/nymc_fac_posters

Part of the Amino Acids, Peptides, and Proteins Commons, and the Respiratory Tract Diseases Commons

Recommended Citation

Amatya, S., Amin, A., Paudel, U., & Parton, L. A. (2017). Are Gene Polymorphisms of Fibroblast Growth Factor 10 Associated with Patent Ductus Arteriosus and Bronchopulmonary Dysplasia in Extremely Low Birth Weight Infants?. Retrieved from https://touroscholar.touro.edu/nymc_fac_posters/31

This Poster is brought to you for free and open access by the Faculty at Touro Scholar. It has been accepted for inclusion in NYMC Faculty Posters by an authorized administrator of Touro Scholar.For more information, please contact touro.scholar@touro.edu.

Are Gene polymorphisms of Fibroblast Growth Factor 10 associated with Patent Ductus Arteriosus and Bronchopulmonary Dysplasia in extremely low birth weight infants?

Shaili Amatya, MBBS, Asma Amin, BA, Umesh Paudel, MBBS, Lance A. Parton, MD. Division of Newborn Medicine, Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, New York

maria Fareri children's Hospital

estchester Medical Center

Patent Ductus Arteriosus

Persistent PDA is defined as requiring medical treatment/surgery

It causes significant morbidity in the ELBW infants

Bronchopulmonary Dysplasia

Defined as an oxygen need at 36 weeks postmenstrual age

Incidence is about 40% for ELBW infants

Genetic variation may predispose to BPD in preterm infants about 30-80%

Hypothesis

FGF10 SNP ; rs2973644, rs900379, rs1011814 are associated with susceptibility to PDA and or BPD in ELBW infants.

Na, K-ATPase

Inclusion criteria: ELBW infants (birth weight < 1kg) Informed parental consent

FGF10 SNPs Analysis: DNA was isolated from buccal swabs and real-time PCR was performed using Taqman probes

BPD defined by the need for oxygen supplementation at 36 weeks post menstrual age.

Statistics: Student's t-test, Chi-square, Mann-Whitney, z-test; *P* < 0.05

*Alveolar epithelial cell, fibroblast growth factor 10, extracellular signal regulated kinase, Guanosine triphosphate, Sonic hedgehog, Growth factor receptor-bound protein 2, Son of sevenless, mitogen extracellular kinase

Methods

•Low birth weight and gestational age was associated with BPD •FGF10 SNP ; rs2973644, rs900379, rs1011814 were not associated with PDA and or BPD. • Other SNPS may be involved in the susceptibility of PDA or BPD

Results

ograph	ic Charac	teristics- F	PDA		Der	
	PDA	No PDA	<i>p</i> -value			
lian;IQR)	25 (24, 26)	25 (24, 26)	0.1	GA (w	GA (wk; m	
an± SD)	742±171	737 ±175	0.9	BW (g	BW (gm; r	
roid	52(78%)	17 (74%)	0.8	Prenatal S		
der	32(49%) 12(50%		0.6			
panic White	17(29%)	9(28%)		Fema	le Ge	
nanic Black	15(26%)	11(34%)	4%) 0.6 4%)		Non	
	10(2070)			Race	Non	
	22(38%)	11(34%)			Hisp	
	4(7%)	1(3%)			Othe	

Genotype Distribution - PDA

FGF10 SNPs	rs297364	rs2973644 ^β		rs900379 ^β		rs1011814 ^β	
	No PDA N=29	PDA N=49	No PDA N=31	PDA N=57	No PDA N=30	PDA N=56	
Wild allele	9(31%)	7(14%)	15(48%)	26(45%)	10(33%)	25(45%)	
Heterozygous	6(20%)	14(28%)	9(29%)	22(38%)	6(20%)	15(27%)	
Minor allele	14(48%)	28(57%)	7(22%)	9(15%)	14(47%)	16(28%)	
Any variant allele	20(68%)	42(85%)	16(51%)	31(53%)	20(67%)	31(55%)	

Conclusions

Race	Non Hispanic White		ç	9(30%)		l (19%)		
	Non Hispanic Black		5	5(16%)		16(28%)		
	Hispanic Other		1	11(37%) 5(16%)		8(23%)	0.4	
			5			13(23%)		
Genotype Distribution-BPD								
FGF10 SNPs		rs2973644 ^β		rs900379 ^β		rs1011814 ^β		
		BPD N=33	No BPD N=45	BPD N=38	No BPD N=53	BPD N=30	No BPD N=54	
Wild alle	ele	19(58%)	22(49%)	17(45%)	25(47%)	15(50%)	20(37%)	
Heterozygous		7(21%)	14(31%)	12(31%)	20(37%)	7(24%)	15(28%)	
Minor allele		7(21%)	9(20%)	9(24%)	8(15%)	8(26%)	19(35%)	
Any variant allele		14(42%)	23(51%)	21(55%)	28(52%)	15(50%)	34(63%)	

Demographic Characteristics- BPD

	No BPD	BPD	<i>p</i> - value
nedian;IQR)	26 (25, 27)	25 (24, 26)	0.001
mean± SD)	761±143	690 ±157	0.001
Steroid	42 (76%)	25(85%)	0.2
ender	18(60%)	24(45%)	0.1
Hispanic White	9(30%)	11(19%)	
Hispanic Black	5(16%)	16(28%)	0.4
panic	11(37%)	13(23%)	
er	5(16%)	13(23%)	

α: p<0.05 β: NS

References

1. Parton LA et al. The genetic basis for BPD. FrontBiosc 2006;11:1854–1860.

2. Upadhyay D et al. FGF10 prevents mechanical stretch induced alveolar epithelial cell DNA damage via MAPK activation. Am J Physiol Lung Cell Mol Physiol 284:350-359,2003 3. Ornitz et al. The FGF signaling pathway. WIREs Dev Biol 2015, 4:215-266

4. Jobe et al. Fetal and Neonatal Lung Development, 2016