2-2017

Autologous Mesenchymal Stem Cell Transplantation in Male Stress Urinary Incontinence

Benjamin Mann
New York Medical College

Keerat Kaur
New York Medical College

John Phillips
New York Medical College

Carol Eisenberg
New York Medical College, carol_eisenberg@nymc.edu

Leonard M. Eisenberg
New York Medical College, leonard_eisenberg@nymc.edu

Follow this and additional works at: https://touroscholar.touro.edu/nymc_fac_posters

Part of the Urology Commons

Recommended Citation

This Poster is brought to you for free and open access by the Faculty at Touro Scholar. It has been accepted for inclusion in NYMC Faculty Posters by an authorized administrator of Touro Scholar. For more information, please contact jogrady@nymc.edu.
Radical prostatectomy is the most traditional treatment for prostate cancer, which affects one out of every seven men. One of the most common side effects of a radical prostatectomy is stress urinary incontinence. [1] A 2010 study states that:

At 6 weeks after surgery, 59% (405) of men were incontinent, defined as any pad use. At 58 weeks after surgery 22% (165) of men were incontinent. At 58 weeks incontinence was more prevalent in men who were obese and physically inactive (95% incontinent). Physical activity may offset some of the negative consequences of being obese because the prevalence of incontinence at 58 weeks was similar in the obese and active (25% incontinent), and nonobese and inactive (24% incontinent) men. The best outcomes were in men who were nonobese and physically active (16% incontinent). Men who were not obese and were active were 26% less likely to be incontinent than men who were obese and inactive (RR 0.74, 95% CI 0.52-1.06). [2]

Furthermore, almost 10% of patients experience urinary incontinence permanently. Conservative treatment for stress urinary incontinence in men consists of pelvic floor exercises. In cases where conservative treatment is unsuccessful, “urethral bulking agents, male slings, and the artificial urinary sphincter” can be used. Stem cells have proven to have regenerative effects and have been looked into as a treatment for urinary incontinence in women, by using stem cells to repopulate missing smooth muscle in the pelvic floor muscles. [3] Therefore, it is necessary to look into stem cells as a possible treatment for male urinary incontinence.

An animal trial is a necessary step in accessing how safe and effective a possible drug can be. Generally, it is difficult to find a mouse model that displays incontinence. Previous animal models used to test stem cell treatments for urinary incontinence involved artificially creating incontinence in mice. [3] In order to determine if a mouse is urinary incontinent, one can observe the urination pattern of a mouse model in a cage. Generally, mice urinate in one or two discriminate locations, which can be observed by placing filter paper on the bottom of the cage. When a mouse is incontinent, there would be spots on the filter paper indiscriminately.

There is an animal model that is currently being used in a bladder cancer study associated with New York Medical College and other institutions that display the indiscriminant urination pattern, and have been determined to be an excellent model of urinary incontinence. The goal of the summer was to determine how to consistently produce smooth muscle cells from mouse bone marrow.

Following a review of literature, Transforming Growth Factor Beta (TGF-β) was decided to be the cytokine of choice. It has been proven that TGF-β can cause smooth muscle cell differentiation through the SMAD2/SMAD3 pathway and its role in increasing the expression of myocardin, another factor in smooth muscle differentiation. Both TGF-β1 and TGF-β3 were investigated throughout the study. Finally, the project attempted to find the ideal conditions for smooth muscle differentiation using the TGF-β pathway.

RESULTS

Immunostaining

Immunostaining was used to test the presence of smooth muscle differentiation. By observing the characteristics expressed, one could determine if the mesenchymal stem cells had been differentiated into smooth muscle cells. An example of an immunostain for smooth muscle actin is shown in Figure 1. It shows the presence of calponin, another smooth muscle marker, in a different colony of cells treated by TGFß-3. Following the incubation period, a secondary antibody was added to the chambers, each row (2 chambers) receiving a different antibody. Following a second 24-hour incubation period, appropriate secondary antibodies were diluted in block according to manufacturer recommendations. The secondary antibodies were added to the appropriate chambers and allowed to incubate for two hours. DAPI diluted in PBS was then added to the chambers to stain the nuclei, while the green FITC stain are smooth muscle actin. The images above were captured by a confocal microscope. The blue DAPI stains the nuclei, while the green FITC mark smooth muscle actin. Other columns were stained for another marker, such as von Willebrand factor (VWF) or smooth muscle actin.

RESULTS CONTINUED

Figure 2. Capillons in TGFß-3 treated cells. The image was captured using a confocal microscope. The blue Dapi stains the nuclei and the green FITC stain are antibodies for calponin. The Image above shows presence of calponin in the treated cells.

Figure 3. Time course of TGFß-3 treatment. The boxes represent the eight chambers of the Lab-Tek chamber slide, non-treated MSCs and MSCs treated with TGFß-3 were placed in alternating rows. The top half of the chambers were only treated for 24-hours while the bottom half of the chambers were treated for 48-hours. One column was then stained for calponin while the other column was stained for smooth muscle actin.

This second experiment showed that the MSCs that were treated for 48-hours showed more smooth muscle characteristics than the MSCs that were treated for 24-hours. Due to an error with DAPI staining, the exact ratio of cells that successfully differentiated to smooth muscle cells could not be determined, but it appeared that the ratio of differentiation in the 48-hour treatment is similar to the 72-hour treatment.

CONCLUSIONS

The study found that while TGF-β1 is not an optimal cytokine to consistently produce smooth muscle cells, TGF-β3 is. Additionally, it was determined that though the previous study that used TGF-β3 treated the cells for only 24-hours, it is more optimal to treat the cells for 48-hours or 72-hours. The next step of the project is to inoculate the smooth muscles into the urinary incontinence mouse model and see the results.

BIBLIOGRAPHY