Hypocretin/Orexin Peptides Alter Spike Encoding by Serotonergic Dorsal Raphe Neurons through Two Distinct Mechanisms That Increase the Late Afterhyperpolarization

Masaru Ishibashi
New York Medical College

Iryna Gumenchuk
New York Medical College

Kenichi Miyazaki
New York Medical College

Takafumi Inoue

William N. Ross
New York Medical College

See next page for additional authors

Follow this and additional works at: https://touroscholar.touro.edu/nymc_fac_pubs

Part of the Physiology Commons

Recommended Citation

This Article is brought to you for free and open access by the Faculty at Touro Scholar. It has been accepted for inclusion in NYMC Faculty Publications by an authorized administrator of Touro Scholar. For more information, please contact touro.scholar@touro.edu.
Hypocretin/Orexin Peptides Alter Spike Encoding by Serotonergic Dorsal Raphe Neurons through Two Distinct Mechanisms That Increase the Late Afterhyperpolarization

Masaru Ishibashi, Iryna Gumenchuk, Kenichi Miyazaki, Takafumi Inoue, William N. Ross, and Christopher S. Leonard

Department of Physiology, New York Medical College, Valhalla, New York 10595, and Department of Life Science and Medical Bioscience, Faculty of Science and Engineering, Waseda University, Tokyo 162-8480, Japan

Orexins (hypocretins) are neuropeptides that regulate multiple homeostatic processes, including reward and arousal, in part by exciting serotonergic dorsal raphe neurons, the major source of forebrain serotonin. Here, using mouse brain slices, we found that, instead of simply depolarizing these neurons, orexin-A altered the spike encoding process by increasing the postspike afterhyperpolarization (AHP) via two distinct mechanisms. This orexin-enhanced AHP (oeAHP) was mediated by both OX1 and OX2 receptors, required Ca\(^{2+}\) influx, reversed near E\(_K\), and decayed with two components, the faster of which resulted from enhanced SK channel activation, whereas the slower component decayed near E\(_K\), but was not blocked by UCL2077, an antagonist of sAHPs in some neurons. Intracellular phospholipase C inhibition (U73122) blocked the entire oeAHP, but neither component was sensitive to PKC inhibition or altered PKA signaling, unlike classical sAHPs. The enhanced SK current did not depend on IP3-mediated Ca\(^{2+}\) release but resulted from A-current inhibition and the resultant spike broadening, which increased Ca\(^{2+}\) influx and Ca\(^{2+}\)-induced-Ca\(^{2+}\) release, whereas the slower component was insensitive to these factors. Functionally, the oeAHP slowed and stabilized orexin-induced firing compared with firing produced by a virtual orexin conductance lacking the oeAHP. The oeAHP also reduced steady-state firing rate and firing fidelity in response to stimulation, without affecting the initial rate or fidelity. Collectively, these findings reveal a new orexin action in serotonergic raphe neurons and suggest that, when orexin is released during arousal and reward, it enhances the spike encoding of phasic over tonic inputs, such as those related to sensory, motor, and reward events.

Key words: arousal; narcolepsy; reward; SK channels; slow AHP; spike frequency adaptation

Significance Statement

Orexin peptides are known to excite neurons via slow postsynaptic depolarizations. Here we elucidate a significant new orexin action that increases and prolongs the postspike afterhyperpolarization (AHP) in 5-HT dorsal raphe neurons and other arousal-system neurons. Our mechanistic studies establish involvement of two distinct Ca\(^{2+}\)-dependent AHP currents dependent on phospholipase C signaling but independent of IP3 or PKC. Our functional studies establish that this action preserves responsiveness to phasic inputs while attenuating responsiveness to tonic inputs. Thus, our findings bring new insight into the actions of an important neuropeptide and indicate that, in addition to producing excitation, orexins can tune postsynaptic excitability to better encode the phasic sensory, motor, and reward signals expected during aroused states.

Introduction

Orexin neuropeptides (orexin-A and -B), also known as hypocretin-1 and -2 (de Lecea et al., 1998; Sakurai et al., 1998), act via two G-protein-coupled receptors (Sakurai et al., 1998) to influence multiple homeostatic systems, including those controlling reward and arousal (Carter et al., 2009). Indeed, orexins are

Received Feb. 26, 2016; revised Aug. 10, 2016; accepted Aug. 11, 2016.

This work was supported by Public Health Service Grants NS027881 and HL064150 to C.S.L. We thank Dr. Carl Thompson for statistics advice; Dr. Lorin S. Milescu for assistance in implementing his dynamic clamp software; and Aaron Ash for expert programming; Elizabeth Lynn and Dr. Catherine Steger for expert technical assistance; and Dr. Masashi Yanagisawa and Dr. Richard Chemelli for providing orexin receptor null breeder mice.

The authors declare no competing financial interests.

Correspondence should be addressed to Dr. Christopher S. Leonard, Department of Physiology, New York Medical College, Valhalla, NY 10595. E-mail: chris_leonard@nymc.edu.

DOI: 10.1523/JNEUROSCI.0635-16.2016

Copyright © 2016 the authors 0270-6474/16/3610097-19$15.00/0
critical for normal waking and sleep because the loss of orexin signaling results in the sleep disorder narcolepsy with cataplexy in animals and humans (Chemelli et al., 1999; Lin et al., 1999; Peyron et al., 2000; Thannickal et al., 2000).

The dorsal raphe (DR) and other monoaminergic nuclei receive strong orexinergic innervation (Peyron et al., 1998), express orexin receptors (OxRs) (Trivedi et al., 1998; Marcus et al., 2001) and are targets through which orexin promotes arousal, suppresses sleep (Piper et al., 2000), and prevents cataplexy in narcolepsy (Hasegawa et al., 2014). Serotonergic (5-HT) DR neurons have extensive ascending projections, where 5-HT acts to regulate mood, reward, feeding, arousal and motor behavior, and is implicated in the etiology and treatment of psychiatric disorders, including depression (for review, see Jacobs and Formal, 1999; Lowry et al., 2005). Thus, factors influencing output from these neurons will widely impact CNS function.

5-HT DR neurons fire slowly at tonic rates that vary with behavioral state, having their highest rates in active waking and near-zero rates during REM sleep (for review, see Monti, 2011). Some 5-HT neurons also show a “cluster” or “burst” firing, which augments 5-HT release (Hajós et al., 2007) and occurs mostly during waking (Sakai, 2011), when orexin neurons are most active (Lee et al., 2005b; Mileykivskyi et al., 2005). 5-HT neurons also phasically encode sensory/motor events and reward magnitude (Ranade and Mainen, 2009; Liu et al., 2014), and the majority of these neurons burst during succrose reward acquisition (Li et al., 2016). While orexin neurons fire during reward acquisition (Hassani et al., 2016), how orexins might influence these firing patterns of 5-HT DR neurons is unknown. Orexins produce slow depolarizations throughout the CNS (for review, see Leonard and Kukkonen, 2014), which result mainly from a noisy cation current in DR 5-HT neurons (Brown et al., 2002; Liu et al., 2002; Kuhlmeier et al., 2008). Orexins can also regulate transmitter release, which is associated with increased GABAergic input (Liu et al., 2002) and decreased excitatory input (Haj-Dahmane and Shen, 2005) to 5-HT neurons, suggesting a multifaceted role in regulating DR output. The firing of 5-HT DR neurons is strongly regulated by a postspike afterhyperpolarization (AHP) (Aghajanian and Vandermaelen, 1982), mediated by apamin-sensitive, SK-type, Ca2+-dependent K+ channels (Freedman and Aghajanian, 1987; Pan et al., 1994; Scuveré-Moreau et al., 2004; Crawford et al., 2010; Aïx et al., 2014) that promotes slow firing (Rouchet et al., 2008).

Here we show that orexin-A enhances this AHP and that this orexin-enhanced AHP (oeAHP) results from two distinct mechanisms, including both an increased SK current and the induction of a novel slow-AHP-like current. Moreover, our functional studies establish that the oeAHP promotes slower and more regular firing than expected for depolarizing orexin currents, and that it preserves responsiveness to phasic inputs while attenuating responsiveness to tonic inputs. Collectively, our findings reveal a novel modulatory action of orexin that plays a previously unexpected role in shaping excitability of 5-HT DR neurons to better encode phasic sensory, motor, and reward signals expected during aroused states.

Materials and Methods

All procedures complied with National Institutes of Health guidelines and were approved by New York Medical College Institutional Animal Care and Use Committee.

Mice and genotyping. Brain slices were prepared from young male and female C57BL/6J mice (Charles River) and OxR receptor null, OxR receptor null, or double OxR knock-out (DKO) mice (P14–P26). Receptor knock-out mice were offspring from homozygous null breeders having a mixed C57BL6 and 129/Sv genetic background (kindly provided by Drs. M. Yanagisawa and R. Chemelli). Use of these mice has been described previously (Willie et al., 2003; Mieda et al., 2011; Kohlmeier et al., 2013). To confirm the genotype of each mouse, tail biopsies were obtained during slice preparation and analyzed by PCR to determine whether each receptor was wild-type or knock-out. The three primers for Ox1, consisted of a common primer (5′-CTCTTGTCTAGACGACGCCCAGGACTC 3′), a knock-out primer (5′-TGAGCGGAT1AAACCGCTGGGATCTC 3′), and a wild-type primer (5′- gCAAGAATGGGTATGAAGGGAAGGCG 3′). The expected product sizes were ~320 bp for the wild-type allele and ~500 bp for the knock-out allele. The three primers for Ox2, consisted of a common primer (5′- CGTGCAAATCCCTTGCAAA 3′), a knock-out primer (5′- GGTITTTCTCAGTCAGCGCTGGTAGTTC 3′), and a wild-type primer (5′- AATCTCTTGAAGATCCCTCCTTAG 3′). The expected product sizes were ~620 bp for wild-type allele and ~300 bp for the knock-out allele. These two sets of primers for different OxRs were processed separately, and PCR was performed using 35 cycles of 30 s at 94°C, 30 s at 62°C and 1 min at 72°C, followed by one cycle at 72°C for 10 min. The result of each PCR was then fractionated on a 2% agarose gel, and the PCR product was visualized by ethidium bromide staining.

Brain slice preparation. Mice were decapitated following induction of deep anesthesia with isoflurane. A block of brain with the target structure was rapidly removed and incubated and then cut in ice-cold ACSF, which contained the following (in mM): 124 NaCl, 5 KCl, 1.2 NaH2PO4, 2.7 CaCl2, 1.2 MgSO4, 26 NaHCO3, and 10 dextrose (295–305 mOsm) and was oxygenated with carbogen (95% O2/5% CO2). Brain slices (250 μm) were cut with a Leica vibratome (VT1000S) and were then incubated at 35°C for 15 min in oxygenated ACSF. They were then stored in continuously oxygenated ACSF at room temperature until use. For recordings, slices were submerged in a chamber that was perfused at 1–2 ml/min with continuously oxygenated ACSF, which was at room temperature (23 ± 2°C) for all experiments, except those examining the firing properties with current clamp and dynamic clamp. For those experiments, slices were superfused with ACSF maintained at 32 ± 1°C (see Figs. 9; 10).

Drugs and experimental solutions. Ionotropic receptor antagonists DNQX (15 μM, Sigma), AP5 (50 μM, Sigma, Tocris Bioscience), and SR-95531 (gabazine, 20 μM, Sigma) with strychnine (2.5 μM, Sigma) were added to ACSF in all experiments to block synaptic potentials. In voltage-clamp experiments, TTX (500 nM, Alomone Labs) was added to block voltage-gated sodium channels. Orexin-A (Peptides International, 3–300 nM) was diluted into ACSF to final concentration from frozen stock solutions, and was then dissolved in ACSF at final concentration the day of the experiment. PKC inhibitor bisindolylmaleimide I (Bis I; 1 μM, Calbiochem) was dissolved in water at stock concentration. Protein kinase C inhibitor peptide 19–36 (PKCIP; 2 μM, Calbiochem) was dissolved in pipette solution at 200 μM and then further dissolved to final concentration in pipette solution on the day of the experiment. PKC inhibitor bisindoylmaleimide I (Bis I; 1 μM, Calbiochem) was dissolved in ACSF at final concentration just before use. Aminap (100 or 300 nM, Tocris Bioscience), cyclopiazonic acid (CPA; 10 μM, Sigma), phynylephrine (PE; 300 nM to 30 μM, Sigma), and prazosin (100 nM, Tocris Bioscience) were dissolved in ACSF at final concentration, respectively. Ruthenium Red (RuR, 100 μM, Sigma) was dissolved in ACSF at final concentration just before use, then diluted in pipette solution at final concentration. 5-HT (30 μM, Tocris Bioscience) was diluted in ultrapure water at stock concentration and then dissolved in ACSF at final concentration the day of the experiment. Xestospongin C (XeC; 1 μM, Tocris Bioscience) and 2-aminoethoxylphenylborane (2-APB; 50 μM, Tocris Bioscience) were dissolved in ACSF at final concentration just before use, then diluted in pipette solution at final concentration. 5-HT (30 μM, Tocris Bioscience) was dissolved in ACSF at final concentration and then dissolved in ACSF at final concentration the day of the experiment.
iment. Voltage-dependent potassium channel blocker 4-aminopyridine (4-AP; 5 mM, 0.5 mM, Sigma) was directly dissolved in ACSF at final concentration.

Whole-cell electrophysiological recording, imaging, IP3, and Ca2+ uncaging. Whole-cell recordings (seals > 3 GΩ) with simultaneous Ca2+ imaging were obtained from neurons in the DR and other structures (tuberomammillary nucleus [TMN] or laterodorsal tegmental nucleus [LDT]) as previously described (Kohlemeier et al., 2008). Briefly, borosilicate micropipettes (2–4 MΩ; catalog #8050, AM Systems) were used and neurons were visualized for whole-cell recordings at 160 × magnification using visible or near IR light, differential interference contrast optics, and a Nikon tube camera (Dage VE-1000) mounted on a fixed-stage microscope (Olympus, BX50W).

Our normal pipette solution contained the following (in mM): 144 K-glucanote, 3 MgCl2, 10 HEPES, 0.3 NaGTP, and 4 NaATP (310 mOsm), and Bis-fura-2 (50 μM; Invitrogen) was added for calcium-imaging experiments. For strong and fast calcium buffering, the pipette solution contained 104 K-glucanote, 3 MgCl2, 10 HEPES, 0.3 NaGTP, 4 NaATP, and 10 K+·BAPTA. Biotinylated Alexa-594 (25 μM; Invitrogen) was included in all experiments for cell identification.

To isolate and measure whole-cell Ca2+ currents, the pipette solution was used and the ACSF contained the following (in mM): 144 Cs-methanesulfonate, 3 MgCl2, 10 HEPES, 0.3 NaGTP, and 4 NaATP, pH adjusted to 7.3 with CsOH, and the ACSF contained the following (in mM): 124 NMDG, 5 KCl, 1.25 NaH2PO4, 0.25 CaCl2, 3.65 MgSO4, 26 NaHCO3, and 10 dextrose (295–305 mOsm).

To isolate and measure whole-cell K+ currents, the normal pipette solution was used and the ACSF contained the following (in mM): 125.25 NaCl, 5 KCl, 2.7 CoCl2, 1.2 MgCl2, 26 NaHCO3, and 10 dextrose. Cobalt was added to the ACSF just before each experiment.

Gigaseals were obtained using an Axopatch 200 B amplifier (Molecular Devices) operated in voltage-clamp mode, filtered at 2 or 5 kHz, and sampled at 20 kHz. Imaging experiments were conducted using a 40X water-immersion objective (0.8 NA) with a MicroMax camera (Roper Scientific) equipped with an EVV 57 frame-transfer chip (field size = 160 μm/ side). Bis-fura-2 was excited at 380 nm using a shuttered 75 W xenon lamp.

Whole-cell recordings were either conducted in voltage-clamp or “clamp-fast mode”, following pipette capacitance compensation; the quality of the recording was assayed by monitoring holding current, access resistance and input resistance as determined by the voltage or current response to a brief, negative going step. These parameters were monitored throughout the recording, and data were discarded from analysis if access resistance became unstable or changed by >20% between measurements. Recordings were also terminated if cell parameters became unstable. In most experiments, current and voltage traces were digitized and command pulses were generated with custom software (TIWB) (Inoue et al., 1998) run on a Mac OS computer controlling an ITC-18 interface (Instrutech-HEKA) that ensured precise synchronization between electrophysiological and optical signals.

Images were binned on the chip at 4 × 4 and read out through a 1 MHz, 14 bit A/D converter. Images were acquired every 50 ms, a rate fast enough to monitor changes in [Ca2+], accompanying rapid alterations of the membrane potential. Changes in fluorescence (ΔF/ΔF0) were quantified from the average pixel values of regions of interest (ROIs) placed on the fluorescence images. ΔF was calculated as the difference between the background-subtracted ROIs value for each frame minus the background-subtracted baseline fluorescence. The background was taken from the value of an ROI positioned remotely from the filled cell. Baseline fluorescence was the average ROI values measured over the first few frames of each sequence before stimulation. ΔF was then divided by the background-subtracted baseline fluorescence to compute ΔF/ΔF0. Because Bis-Fura-2 fluorescence resulting from excitation at 380 nm decreases with calcium binding, ΔF/ΔF0 responses have been inverted for clarity.

Postspike AHPS were evoked by firing single action potentials with brief (2–3 ms) current pulses adjusted to be suprathreshold, or by a 5 spike protocol consisting of a train of 5 suprathreshold current pulses (2–3 ms each at 20 Hz). To compare these AHPS, baseline membrane potential was adjusted to identical values of ~65 or ~70 mV by direct current injection. AHPS were evoked with a 5 pulse protocol consisting of a train of 5 depolarizing voltage steps to ~5 mV (10 ms duration, 20 Hz) from a holding potential of ~65 mV and delivered every ~30 s. To compute the AHP current altered by orexin, leak-corrected membrane current evoked by the 5 pulse protocol was subtracted from the leak-corrected current evoked by the 5 pulse protocol during orexin action. Because AHP currents were measured at the holding potential, leak correction was accomplished by subtracting the average holding current just before delivering each 5 pulse protocol.

Isolated Ca2+ and K+ currents were evoked and recorded using PCLAMP 8 software (Molecular Devices, RRID: SCR_011323) running on a PC using a Digidata 1322 (Molecular Devices). Voltage and current traces were low pass filtered at 2 kHz and sampled at 20 kHz. Leakage currents and uncompensated capacitive components were subtracted using a P/4 method, implemented in Clampex 8, and both the subtracted and raw current traces were acquired.

Isolated Ca2+ currents were monitored before and after orexin application by 30 ms step depolarizations to ~25 mV from a holding potential of ~65 mV, delivered every 30 s, and confirmed by blockade with extracellular Co2+ (2.7 mM). To measure isolated K+ currents, three sets of voltage-clamp experiments were performed before and after orexin application. From a holding potential of ~65 mV, delayed rectifier current was elicited by a series of activation pulses from ~95 mV to ~50 mV in 10 mV increments following a 300 ms inactivation pulse to ~45 mV. To elicit a transient outward current, the same protocol was repeated with a 150 ms de-inactivating prepulse to ~105 mV preceding the activation steps. The transient currents were then computed by subtracting the first series of currents from the second series of current. A third series of pulses to measure the voltage dependence of inactivation was delivered from a holding potential of ~65 mV. An initial 150 ms inactivating pulse to ~45 mV was followed by a 150 ms prepulse that varied from ~105 mV to ~35 mV in 10 mV increments and was followed by a 250 ms test pulse to ~15 mV. The transient current was computed by subtracting the delayed rectifier current elicited by a test pulse preceded by a prepulse to ~35 mV. For both Ca2+- and K+-current recordings, uncompensated series resistance was between 4 and 11 MΩ and was electronically corrected by 40%–75%.

Repetitive firing was elicited with constant current steps of 5 s duration and amplitudes from 50 to 300 pA, delivered once every 20 s. The ability to fire spikes in response to different frequency trains of stimuli was assessed with 10 s duration trains of brief (3 ms) current pulses delivered at 0.5–20 Hz and adjusted in strength (~250 pA) to produce a spike by 100% of the pulses delivered at 5 Hz in control conditions.

To simulate the effect of the noisy orexin current on firing, two approaches were used. In the first approach, a previously recorded inward orexin current (holding potential of ~65 mV) was scaled and used as the command current in current-clamp recording experiments. In the second approach, a noisy orexin conductance was added by dynamic clamp, which was implemented using QuB software as modified by Dr. Lorin S. Milescu (Milescu et al., 2008), running on a PC (ASL Marquis M517-T) controlling a National Instruments multifunction PCIe card (NI PCIe-6621). The virtual orexin conductance was derived from a typical orexin current injected by the dynamic clamp was determined by the equation f = Iurex/Γorex, where Γorex, the normalized conductance wave, Vm = membrane potential, and Vrev = the orexin reversal potential (~15 mV).

To uncage IP3 inside recorded neurons, 2 μM DMNPE-DTPA (1-(4,5-dimethoxy-2-nitrophenyl)-1,2-diamoethane-N,N',N'-tetraac-
etnic acid, ThermoFisher, D6814; DMNP) with 0.75 mm CaCl₂ was dissolved in normal patch solution containing 100 μM Oregon Green BAPTA 2. Using Patch’s Power Tools (version 2.19) XOP (http://www3.miphc.mpg.de/groups/neher/index.php?page=aboutxpp) for Igor Pro 6 (WaveMetrics, RRID:SCR_000325), we estimated a resting free Ca²⁺ concentration of ~70 nM. Both solutions were prepared in low light, and patching was done using IR illumination. Neurons were filled for >5 min before experiments began. For caged IP₃, photolysis was accomplished using flashes of 380 nm light provided by our xenon arc lamp with exposure time controlled by the shutter system. For caged Ca²⁺ photolysis was accomplished using a Prizmatix Mic-LCD emitting at 385 nm (15 nm FWHM) with exposures determined by computer-generated TTL pulses gating the controller. To minimize uncaging within the pipette, the neuron was positioned so that the pipette was mostly occluded by the edge of the aperture in the light path. DMNP uncaging pulses were delivered at intervals of >2 min and were interleaved with three 5 pulse protocols.

Data analyses. Data were analyzed and figures prepared using Igor Pro 6. All reported values of Vm have been corrected by ~15 mV to compensate for liquid junction potentials, which were measured for each patch solution and ACSF combination (range: ~14.7 to ~16.4 mV). Action potential and AHP amplitudes were measured from the baseline membrane potential. Rinput was measured in current clamp with ~10 or ~20 pA pulses or in voltage clamp with ~10 nV pulses. AHP duration was measured as time to 50% recovery (T0.5). Spike-frequency adaptation (SFA) was determined from the initial (first interspike interval) and steady-state firing frequency (last 3–5 intervals) produced by 5 s current pulses. Curve fitting was done using Igor Pro. Single and double exponentials were fit to average currents to estimate time constants (tau). A Boltzmann function (1/(1+exp(Vm/V1/2 − Vm/k))) was fit to the average G/(Gmax) and I/(Imax) curves measured for the transient outward current at three 5 pulse protocols. Significance was set at p < 0.05.

Immunofluorescence. To identify serotonergic neurons, slices were immersed fixed (4% PFA) overnight and cryoprotected (30% sucrose in PBS). Slices were then resectioned (40 μm) on a freezing microtome, and free-floating sections were immunolabeled with antibodies against tryptophan hydroxylase (TpH; Abcam, 3907, RRID:AB_304147; and Covance PSH-327P, RRID:AB_10063449, sheep polyclonals, 1:400). Serotonergic neurons were identified by immunofluorescence using an Alexa-488-conjugated secondary antibody (Invitrogen, A11015, donkey anti-sheep).

Results

Large neurons (long axis > ~25 μm) in the dorsal and ventromedial portions of the DR nucleus were chosen for recording (n = 292) and had an average input resistance of 670.2 ± 38.9 MΩ (n = 44), which is comparable with previous measurements (e.g., Rood et al., 2014).

Orexin enhances the late AHP

Orexin-A (300 nM) application produced membrane depolarization, a clearly discernible increase in membrane potential noise and firing. To examine the AHP, we repolarized the neurons (Fig. 1A, −1 mV) to baseline with DC current and then compared the AHP produced by the 5 spike protocol (Fig. 1A, right blue box) to that evoked before orexin-A (Fig. 1A, left, red box). Superimposing the traces (Fig. 1A, right) revealed that, following orexin application, the peak of the AHP was larger (control: 6.6 ± 0.5 mV; orexin: 12.7 ± 1.4 mV, n = 21; paired t test: t(20) = 4.76, p < 0.05), later, and slower to recover (control T50: 0.62 ± 0.06 s; orexin T50: 2.2 ± 0.24 s, n = 21; paired t test: t(20) = −7.16, p < 0.05). Of the 22 DR neurons studied in this way, one did not show this AHP effect. Thirteen neurons that showed this AEP were recovered after recording, and 12 of 13 were TpH-immunopositive (Fig. 1B). Moreover, an AEP was observed in all cells for which orexin produced a depolarization. It was activated over the same orexin dose range (Fig. 1C) and developed over the same time course (Fig. 1D) as the depolarization.

Previous studies showed that adrenergic α₁ receptor activation increases the AHP in DR neurons (Freedman and Aghajanian, 1987; Pan et al., 1994); and because orexin can release norepinephrine (Hirotu et al., 2001), we tested whether the oAEP might result from indirect activation of α₁-receptors. We confirmed that the α₁ agonist PE (300 nM to 30 μM) depolarized and enhanced the AHP in mouse DR neurons (3 μM PE, AHP amplitude: 139.0 ± 17.0% of control; AHP duration: 315.4 ± 63.9% of control, n = 5) but found that prasozin (100 nM), which completely blocked the PE effects, failed to block the oAEP (n = 11; Fig. 1E). Nevertheless, PE (3 μM) enhancement of the AHP was sufficient to occlude any further enhancement by orexin-A (300 nM; AHP amplitude in orexin: 102.1 ± 3.8% of AHP in PE, paired t test: t(4) = 0.54, p > 0.05; AHP duration in orexin: 94.4 ± 9.3% of AHP in PE; paired t test: t(4) = −1.57, p > 0.05, n = 5; Figure 1F).

Because there are sex differences in 5-HT DR neurons and baseline firing rates are higher in male rats (Klink et al., 2002), we examined whether we could detect a sex difference in the late AHP or in the oAEP. The control AHPs evoked with the 5 spike protocol were not different in either amplitude (male: 7.22 ± 0.79 mV, n = 11; female: 5.66 ± 0.75 mV, n = 7; unpaired t test: t(16) = −1.35, p > 0.19) or in T50 (male: 0.56 ± 0.06 s, n = 11; female: 0.68 ± 0.15 s, n = 7; unpaired t test: t(16) = −0.83, p = 0.42). Moreover, orexin-A (300 nM) strongly increased the amplitude and duration of the late AHP in slices from both sexes, with a trend toward larger increases in slices from females. Nevertheless, no statistically significant difference between males and females was found in either the amplitude increase (male: 155.5 ± 19.4%, n = 11; female: 222.8 ± 39.2%, n = 7; unpaired t test: t(10) = 0.17, p > 0.05) or duration increase (male: 385.0 ± 69.1%, n = 11; female: 459.0 ± 90.9%, n = 7; unpaired t test: t(16) = −0.66, p > 0.05).

Either OxR alone can mediate the oAEP in DR neurons

Because mRNA for both OX₁ and OX₂ is expressed in the DR (Trivedi et al., 1998; Marcus et al., 2001), and either receptor is sufficient to produce the orexin-mediated inward current (Kohlmeier et al., 2013), we tested whether each receptor was competent to produce the oAEP using slices from mice lacking one receptor. Application of 300 nM orexin-A evoked a depolarization and an unambiguous oAEP in DR neurons recorded in slices from OX₁−/− (Fig. 2A) and OX₂−/− (Fig. 2B) mice. Moreover, neither the increase in AHP amplitude (OX₁−/−: 165.6 ± 23.4%, n = 5; OX₂−/−: 152.1 ± 24.2%, n = 5) nor increase in AHP duration (OX₁−/−: 345.1 ± 98.6%, n = 5; OX₂−/−: 322.8 ± 63.2%, n = 5) was different from those recorded in control DR neurons (amplitude: 194.2 ± 18.4%, n = 21; duration: 416.1 ± 49.9%, n = 21) in slices from C57BL6 mice (Fig. 2C; Amplitude, ANOVA: F(2,28) = 0.76, p > 0.05; Duration, ANOVA: F(2,28) = 0.50, p > 0.05). To confirm that these OxRs were, indeed, neces-
sary, we also recorded DR neurons in slices from DKO mice ($n = 5$ from 3 DKO mice). Orexin-A (300 nM) produced neither a depolarization nor a change in the AHP (Fig. 2D, top traces; amplitude: 97.9 ± 5.6% of control, $n = 5$; duration: 99.66 ± 2.6% of control, $n = 5$), although application of PE still produced an increase in amplitude and duration of the AHP in these neurons (Fig. 2D, bottom traces). Thus, both OX1 and OX2 are competent to mediate the oAHP in DR neurons. This suggests that orexin could produce an oAHP in neurons normally expressing predominantly OX1 or OX2 receptors. To test this idea, and to determine whether neurons other than DR neurons expressed this type of orexin action, we examined the effect of orexin-A on the late AHP of two other arousal-linked targets: the TMN, where the orexin-mediated depolarization is primarily mediated by OX2 (Eriksson et al., 2001; Willie et al., 2003); and the LDT, where the orexin-mediated depolarization is primarily mediated by OX1 (Kohlmeier et al., 2013). We found orexin-A (300 nM) enhanced the AHP duration evoked with the 5 spike protocol in TMN neurons (control: 0.6 ± 0.18 s; orexin: 1.05 ± 0.11 s, $n = 3$ of 3; paired t-test: $t_{(2)} = -3.03$, $p < 0.05$; Fig. 2E) and in LDT neurons (control: 0.56 ± 0.12 s; orexin: 2.06 ± 0.83 s, $n = 7/11$; paired t-test: $t_{(6)} = 1.14$, $p < 0.05$; Fig. 2F). However, unlike in the DR, the average amplitude of the late AHP was not increased in TMN neurons (control: 5.0 ± 0.8 mV; orexin: 5.0 ± 1.0 mV, $n = 3$ of 3; paired t-test: $t_{(2)} = -0.04$, $p > 0.05$) or LDT neurons (control: 6.8 ± 1.4 mV; orexin: 9.0 ± 1.8 mV, $n = 7$ of 11; paired t-test: $t_{(6)} = -1.99$, $p > 0.05$), suggesting that different mechanisms may be involved. Nevertheless, this indicates that the AHP enhancing action of orexin is not restricted to DR neurons and can be observed in neuronal populations naturally expressing a predominance of either receptor.
The AHP enhanced by orexin requires elevation of [Ca2+]_i

Because the postspike AHP in DR neurons is Ca2+-dependent, and orexin enhances somatic Ca2+ transients produced by long depolarizing pulses in DR neurons (Kohlmeier et al., 2008), we examined whether the oeAHP resulted from enhanced spike-evoked Ca2+ transients. Somatic Ca2+ transients resulting from single spikes (Fig. 3A, top traces) or the 5 spike protocol (Fig. 3A, bottom traces) were readily detected and orexin enhanced the AHP following both stimuli. However, orexin did not increase the average somatic Ca2+ transient produced by single spikes (orexin: 92.6 ± 3.1% of control, n = 7) or by 5 spikes (orexin: 96.7 ± 10.0% of control, n = 20; Fig. 3B).

To determine whether elevation of intracellular [Ca2+] was necessary for the oeAHP, we recorded with a patch solution containing the fast calcium buffer BAPTA (10 mM). Under these conditions, the late AHP following 1 and 5 spikes was undetectable (Fig. 3C), even though recording conditions remained excellent, as indicated by normal input resistance and action potential amplitude (Fig. 3C, inset). Moreover, despite an intact orexin-evoked depolarization and large increase in membrane noise (data not shown), no enhanced AHP following 1 or 5 spikes emerged following the application of orexin. This indicates that the AHP enhanced by orexin requires elevation of intracellular Ca2+ and did not result from a Ca2+-independent current that was switched on by OreX activation.

Using a normal internal solution, we next applied ACSF having Co2+ substituted for Ca2+ to block voltage-gated Ca2+ channels and thus determine whether Ca2+ influx was necessary for the oeAHP. Switching into this ACSF completely blocked the late AHP following either 1 or 5 spikes (Fig. 3D). Again, despite an intact orexin-evoked depolarization and a large increase in membrane noise, neither 1 nor 5 spikes elicited an oeAHP following orexin application (n = 5), even though recording conditions remained excellent and action potentials retained their normal amplitude (Fig. 3D, inset). Moreover, enabling Ca2+ influx by reintroducing normal Ca2+ ACSF greatly prolonged the late AHP compared with control, even though the orexin action was subsiding, as indicated by a recovering inward current. Thus, the oeAHP requires Ca2+ influx and elevation of intracellular Ca2+.

Orexin enhances an apamin-sensitive K+ current and a slower apamin-insensitive current that is insensitive to UCL2077

We next conducted voltage-clamp recordings to measure the oeAHP current (I_{oeAHP}). Following spike blockade with TTX, AHP currents were evoked using the 5 pulse protocol delivered every 30 s before and after orexin-A application (300 nM; Fig. 4A). As the noisy inward orexin current developed, a prolonged AHP current emerged (Fig. 4B; compare top traces). Subtracting these currents, following leak-correction, yielded the I_{oeAHP} (Fig. 4B, bottom trace), which decays more slowly than the AHP current in control condition and underlies the oeAHP observed in current-clamp experiments. To estimate the reversal potential of this current, we measured the instantaneous current-voltage curve resulting from brief voltage steps timed to occur at the peak of I_{oeAHP} and delivered both with and without a preceding 5 pulse protocol (Fig. 4C, inset). These curves crossed between −95 and −100 mV (Fig. 4D, n = 7) near the computed E_K (−86 mV, dashed line). Shifting E_K by −18 mV with ACSF containing either 2.5 or 10 mM K+ shifted this estimated reversal potential by −24 mV (n = 4) and 19 mV (n = 5), respectively (data not shown), indicating K+ channel involvement in I_{oeAHP}.

The Ca2+ dependence and shift in reversal with E_K suggest involvement of Ca2+-activated K+ channels. Two slow Ca2+-dependent K+ currents with different kinetics commonly mediate a medium (I_{mAHP}) and slow AHP (sAHP, I_{sAHP}) in neurons. Channels mediating I_{mAHP} are mostly blocked by apamin, a selective blocker of channels containing SK1–3 subunits (for review, see Stocker et al., 2004). In contrast, the I_{sAHP} is strongly inhibited by some neurotransmitters, but the underlying channels are generally unidentified, often insensitive to channel blockers and may be different in different neurons (Vogalis et al., 2003). To test for SK channel involvement, we applied apamin, which blocks most of the postspike AHP in control condition and the AHP enhancement produced by PE (Freedman and Aghajanian, 1987; Pan et al., 1994). Following pretreatment with apamin (100 or 300 nM), our control AHP was blocked by ~90% (100 nM: 88% blocked, n = 11, paired t test: t_{(10)} = 11.98, p < 0.05; 300 nM: 91% blocked, n = 12, paired t test: t_{(11)} = 6.34, p < 0.05), yet after orexin, I_{oeAHP} amplitude (18.7 ± 1.9 pA; n = 23) was only reduced by approximately half (45.0% of control amplitude; 41.5 ± 3.4 pA; n = 11; unpaired t test: t_{(22)} = −6.34, p < 0.05; Fig. 4E). This indicates that both an apamin-sensitive SK

Figure 2. Activations of either OreX alone produce the oeAHP. A, B, An average of three 5 spike-evoked AHPs before (Control, red) and after orexin-A (300 nM; Orx A, blue) in DR neurons recorded in slices from Ox1 null mice (A) and Ox2 null mice (B). C. The effects of orexin-A (300 nM; mean percentage of Control ± SEM) on the amplitude (Amp) and duration (50% recov) of the 5 spike-evoked AHP. D, An average of three 5 spike-evoked AHPs before (red) and after orexin-A (300 nM; blue) in a DR neuron from a DKO mouse (top traces). An average of three 5 spike-evoked AHPs before (Control, red) and after PE (10 μM, lower traces, PE, green) in a DR neuron from a DKO mouse. E, F, An average of three 5 spike-evoked AHPs before (red) and after orexin-A (300 nM; blue) in a TMN neuron (E) and a LDT neuron (F). All scale bars correspond to those in A.
current (I_{SK}) and an apamin-insensitive current are involved. Involvement of two currents was also suggested by the often-observed biphasic decay kinetics of I_{eAHP}. To estimate the time course of each component, we averaged I_{eAHP} from control (n = 7) and apamin pretreated (n = 7) recordings. In the control average, the decay was well fit by a medium (tau = 0.8 ± 0.08 s) and slow exponential (tau = 6.0 ± 0.22 s; Fig. 4F, top). In the apamin average, the decay was well fit by a single slow exponential (tau = 5.9 ± 0.01 s; Fig. 4F, second trace). This suggests that the eAHP results from both an increase in the medium-duration I_{SK} present before orexin application and the emergence of a longer-duration apamin-insensitive current that was absent before orexin application. We confirmed the presence of this enhanced I_{SK} by applying apamin (300 nm) just after emergence of the orexin effect and subtracting the apamin-insensitive component from the initial orexin-enhanced current, to yield the I_{SK} in orexin. From this, we then subtracted the SK current before orexin, to yield the orexin-enhanced SK current (I_{oeSK}). The averaged I_{oeSK} (n = 6) was well fit with a single exponential having a medium decay (tau = 0.71 ± 0.01 s; Fig. 4F, third trace).

The apamin-insensitive part might be mediated by an I_{AHP} which is found in many types of neurons. The antiepileptic compound UCL2077, which blocks KCNQ1/2 channels (Soh and Tzingounis, 2010), has recently been found to inhibit the classical I_{AHP} in hippocampal pyramidal neurons (Shah et al., 2006) and in paraventricular thalamic (PVT) neurons, where orexin inhibits I_{AHP} (Zhang et al., 2010). We therefore tested whether UCL2077 blocks the eAHP current in DR neurons. Following preapplication of UCL2077 (10 μM, >7 min), the eAHP current was still biphasic (medium tau = 1.2 ± 0.03 s; slow tau = 6.5 ± 0.08 s; Fig. 4F, fourth trace) and had an average amplitude of 29.4 ± 6.4 pA (n = 4), which was not significantly different from that in control ACSF (p > 0.05), indicating that the slow part of the eAHP is resistant to UCL2077 and is mediated by different channels from those mediating the sAHP in hippocampus and PVT neurons.

PLC antagonism blocks the entire I_{eAHP} and the orexin-mediated inward current, but these currents do not require PKC activation and are insensitive to altered cAMP/PKA signaling

Both OX1 and OX2 can activate PLC, although it has become apparent that these receptors can also couple to other second-messenger systems (Kukkonen and Leonard, 2014). We therefore examined whether intracellular application of U73122, an inhibitor of PLC, could inhibit the eAHP. As control, we first evaluated the inactive analog U73343 (1 μM) on both the orexin currents and the outward current activated by 5-HT because the latter current does not depend on PLC activation (Innis et al., 1988; Williams et al., 1988; Fenington et al., 1993). Under these conditions, orexin and 5-HT produced their expected actions (n = 5; Fig. 5A), whereas the active analog U73122 (n = 6) blocked both the orexin-mediated inward current and the entire I_{eAHP}, without reducing the 5-HT current (Fig. 5B). Results from ANOVAs (inward current: F_{2,19} = 6.61, p < 0.05; I_{eAHP}: F_{2,19} = 5.70, p < 0.05) followed by post hoc testing confirmed that the orexin action was not different from control in recordings with the inactive analog but was blocked in recordings with the active analog (post hoc tests, p < 0.05; Fig. 5C). In contrast, the active analog did not attenuate the outward current evoked by 5-HT (unpaired t test, t_{9} = 0.90, p > 0.05, compared with inactive analog; Fig. 5D). Thus, the PLC inhibitor U73122 selectively blocked both the orexin-mediated inward current and the I_{eAHP}.

Neurotransmitter inhibition of the classical I_{AHP} is mediated by both CAMP/PKA signaling (Pedarzani and Storm, 1993) and activation of PLC (Villalobos et al., 2011), with involvement of PKC in some cases (Mantenka et al., 1986; Agopyan and Agopyan, 1991). Indeed, whereas the I_{AHP} in PVT neurons is inhibited by both PKA and PKC activation, orexin-mediated inhibition of the
The orexin-enhanced AHP: mechanisms and function

I_{AHP} was only blocked by PKC inhibitors (Zhang et al., 2010). We therefore tested whether the oeAHP might also involve these signaling pathways. In the first series of experiments, we tested whether PKCIP (2 μM in the patch solution, dialyzed for >10 min) (Hall et al., 1995; Schubert et al., 1999) or the PKC inhibitor Bis I (1 μM, brain slices preincubated for >45 min) altered I_{AHP}. Before orexin application, the AHP current produced by the 5 pulse protocol was 67.4 ± 14.8 pA with the PKCIP (n = 4) and 60.4 ± 9.1 pA with Bis I (n = 7). Neither of these was different from the control AHP current (87.4 ± 7.5 pA, n = 11; ANOVA: F(2,19) = 2.64, p > 0.05). Application of orexin-A (300 nM) resulted in an I_{oeAHP} of 36.1 ± 5.6 pA with the PKCIP (Fig. 5F; n = 4) and an I_{oeAHP} of 29.6 ± 5.6 pA with Bis I (Fig. 5G; n = 7). Neither was different from the I_{AHP} measured in corresponding control experiments (41.5 ± 3.4 pA, n = 11; Fig. 5E), suggesting that PKC activation is not required for triggering the oeAHP. In contrast, the PKC activator PDBu (1 μM, n = 6) strongly reduced the I_{oeAHP} (4.1 ± 2.0 pA; Fig. 5H) compared with control or PKC inhibitor conditions (Fig. 5J; ANOVA: F(3,24) = 9.70, p < 0.05), suggesting that PKC, when activated, can inhibit the expression of I_{oeAHP}.

Figure 4. The oeAHP current (I_{oeAHP}) reverses near the potassium equilibrium potential (E_K) and has a biphasic decay mediated by a medium duration SK current and a slower apamin-insensitive current. A, Continuous recording of membrane current in voltage-clamp mode (holding potential — 65 mV) before and during application of orexin-A (Orx A, 300 nM). Intermittent 5 pulse protocols (delivered — 30 s intervals) evoked AHP currents before (left, red dashed box) and after Orx A (right, blue dashed box). B, Top traces, Leak-corrected currents from A before (red) and after (blue) Orx A (3 traces averaged). Bottom trace (purple), I_{oeAHP}, computed as the difference between the top traces. C, Membrane current in orexin (magenta) is superimposed on the membrane current evoked by the 5 pulse protocol (blue) in orexin. Brief (20 ms) voltage pulses (— 115 mV to — 55 mV in 10 mV increments, bottom black trace, inset) were delivered during both traces at a time corresponding to the peak of the oeAHP (bar). The current at the end of each brief step (top traces, inset) was used to estimate the instantaneous I–V relation. D, Resulting instantaneous current (mean ± SEM, Im)−voltage (V_m) relations for traces without the 5 pulse protocol (—, prepulses, open squares, magenta) and traces with the 5 pulse protocol (+, prepulses, filled squares, blue) cross near the calculated potassium reversal potential (E_K; n = 7). E, Apamin (100, 300 nM) reduced the amplitude (mean ± SEM) of I_{AHP} (n = 23). “p < 0.05. F, The average I_{oeAHP} (purple) under control conditions (n = 7; top) had a biphasic decay that was well fit with the sum of a medium and slow-decaying exponential (superimposed white trace). The average I_{oeAHP} in apamin (n = 7; second trace) decayed with a single slow exponential (superimposed white trace). The average orexin-enhanced SK current (I_{oeSK}; n = 5; third trace) was well fit with a medium-decaying single exponential (superimposed white trace). The average I_{oeAHP} in UCL2077 (n = 4; fourth trace) also had a biphasic decay that was well fit with the sum of a medium and slow-decaying exponential (superimposed white trace).

Ca^{2+} stores and Ca^{2+}-induced Ca^{2+} release (CICR) regulate the SK part of the oeAHP

Because the oeAHP requires Ca^{2+} influx and elevation of [Ca^{2+}]_i, and an increase of the apamin-sensitive SK-current contributes to the early part of I_{AHP}, we next considered Ca^{2+}-dependent factors that might be regulated by orexin. First, native SK2 channels exist in a complex with casein kinase 2 and protein phosphatase 2A (PP2A) (Bildl et al., 2004), which reciprocally regulate the Ca^{2+} sensitivity and kinetics of SK2 currents (Bildl et al., 2004; Allen et al., 2007). Because SK2 deactivation kinetics are slowed by PP2A-mediated dephosphorylation, we intracellularly applied an inhibitor of PP2A (okadaic acid; 25 nM; >12 min) to determine whether this would shorten the I_{SK} in DR neurons and perhaps prevent the early, apamin-sensitive part of the oeAHP.
current. Recordings with okadaic acid in the pipette revealed a baseline AHP current with a magnitude (76.4 ± 13.5 pA, n = 7), similar to that observed with normal pipette solution (87.4 ± 7.5 pA, n = 11, unpaired t test: t(16) = 0.42, p > 0.05), but with a duration (T50° = 0.42 ± 0.03 s) that was shorter than that with normal pipette solution (T50° = 0.66 ± 0.08 s; unpaired t test: t(16) = 2.33, p < 0.05), consistent with PP2A inhibition and greater SK phosphorylation. However, IoeAHP recorded under these conditions still showed a biphasic decay with an amplitude (48.5 ± 5.1 pA, n = 7) that was not different from control (unpaired t test: t(16) = 1.17, p > 0.05; Fig. 6A). This indicates that IoeAHP was resistant to PP2A inhibition and that prolongation of the SK current by orexin occurred independently of PP2A-mediated dephosphorylation.

Because IoeAHP depends on PLC, but not on PKC activation, we next examined whether it might depend on Ca2+ release from intracellular stores, which could result from PLC-mediated production of IP3. We first applied the sarco/endoplasmic reticulum...
Ca^{2+}-ATPase (SERCA) inhibitor CPA (10 μM, 10 min) to deplete intracellular Ca^{2+} stores in these neurons (Kohlmeier et al., 2004). In a series of current-clamp experiments, we found that CPA did not significantly change the amplitude of the SK-mediated AHP evoked by the 5 spike protocol (Pre-CPA: 7.8 ± 0.8 mV; CPA: 6.6 ± 0.4 mV, n = 5, paired t test: t(4) = 2.43, p > 0.05), but it did significantly slow its recovery (Pre-CPA T_{50}: 0.7 ± 0.1 s, CPA T_{50}: 1.2 ± 0.1 s, n = 5, paired t test: t(4) = -6.15, p < 0.05). This suggests that SERCA-dependent Ca^{2+} sequestration normally contributes to recovery of the SK-mediated AHP. Following Ca^{2+}-store depletion with CPA, application of orexin-A (300 nM; Fig. 6B) produced a membrane depolarization that appeared normal and an oeAHP that achieved the same duration as the oeAHP without CPA (oeAHP with CPA T_{50}: 2.2 ± 0.3 s, n = 5; oeAHP no CPA T_{50}: 2.2 ± 0.24 s, n = 21, unpaired t test: t(24) = 0.14, p > 0.05). However in CPA, orexin-A application did not significantly increase the AHP amplitude (AHP in CPA: 6.6 ± 0.4 mV; oeAHP in CPA: 8.1 ± 1.2 mV, n = 5, paired t test: t(4) = 0.11, p > 0.05). We further tested this in series of voltage-clamp experiments where we found that the I_{oeAHP} recorded in CPA (27.9 ± 3.4 pA, n = 7; Fig. 6D) was smaller than that in control conditions but was similar in amplitude to that in ampin alone and in CPA following preblocking SK channels with ampin (19.7 ± 2.9 pA, n = 5). A significant ANOVA (F_{3,42} = 11.10, p < 0.05) followed by post hoc testing confirmed that the I_{oeAHP} in CPA was significantly smaller than in Control (p < 0.05) but was not different from the I_{oeAHP} recorded in CPA with ampin (p > 0.05) or in CPA with ampin (p > 0.05). These data indicate that store release is necessary for the orexin-mediated enhancement of the ampin-sensitive component, but not for the longer-lasting ampin-insensitive component of I_{oeAHP}.

We next examined whether store involvement was mediated by IP3 receptors (IP3Rs) and/or ryosyned receptors (RyRs). Intracellular application of the IP3R antagonists XeC (1 μM) or 2-ABP (50 μM) did not reduce I_{oeAHP} (XeC: 47.0 ± 9.2 pA, n = 6; 2-ABP: 52.6 ± 13.7 pA, n = 6; Fig. 6E,F). In contrast, I_{oeAHP} was smaller in recordings obtained with the RyR antagonist RuR (100 μM) in the patch solution (RuR: 23.3 ± 2.9 pA, n = 7; Fig. 6E,F), and this was not further reduced by preblocking SK channels with ampin (21.9 ± 4.9 pA, n = 5; Fig. 6F). ANOVA (F_{4,34} = 4.45, p < 0.05) with post hoc testing of these data, following a log-transform to correct for heterogeneity of variance across recording groups, confirmed that I_{oeAHP} amplitude was not different from control (p > 0.05) in recordings with XeC or 2-ABP but was smaller than control in recordings with RuR and RuR with ampin pretreatment (p < 0.05). Moreover, when recorded with
Orexin prolongs the SK component of I_{neAHP} via inhibition of A-current and a resulting increase in local Ca^{2+} influx

SK channel gating is determined by the subplasma membrane elevation in Ca^{2+}, which is not effectively detected by our bulk cytoplasmic somatic Ca^{2+} indicator signals. We therefore reexamined the possibility that orexin increased spike-evoked Ca^{2+} influx. We first measured the action potential width and found that orexin-A (300 nM) significantly broadened the spike (measured at −25 mV) to 109.0 ± 2.0% of control (paired t test: t_{17} = 1.74, p < 0.05; Fig. 7A). We also recorded action potentials with high intracellular BAPTA (10 mM) to block possible Ca^{2+}-dependent K^{+} repolarization currents and found that orexin-A broadened the spike by 111.5 ± 4.2% of control (paired t test: t_{25} = 2.34, p < 0.05). Similarly, in voltage-clamp mode, we found that the poorly clamped Ca^{2+} action currents (CACs), evoked by our voltage-steps, were also augmented by orexin (Fig. 7B). These orexin effects could result from increasing voltage-gated Ca^{2+} currents or reducing spike-repolarization currents. We therefore first examined the effect of orexin-A on isolated voltage-gated Ca^{2+} currents. We monitored the leak-subtracted Ca^{2+} currents evoked with 30 ms voltage steps from −65 mV to −25 mV. This protocol was delivered every 30 s before and after orexin-A (300 nM) application. This current was relatively stable, although both the peak inward current and tail current showed a slight run-down over the course of the recordings. Nevertheless, the current was not detectably altered by orexin application (Fig. 7C,D).

We next examined whether orexin suppressed voltage-dependent K^{+} currents. We isolated K^{+} currents and compared the effect of orexin-A (300 nM) on both the noninactivating and inactivating components in the same neurons. Orexin application did not change the delayed rectifier currents, but it reduced the transient outward current by 20% (Fig. 8A–E). Fitting the normalized activation and inactivation curves with Boltzmann functions revealed that the corresponding V_{1/2} and slope factors (k) were similar before and after orexin (activation before orexin V_{1/2} = −30.7 ± 1.9 mV, k: 8.5 ± 1.7; activation after orexin V_{1/2} = −32.2 ± 1.7 mV, k: 8.0 ± 1.5; inactivation before orexin V_{1/2} = −63.7 ± 1.0 mV, k: −5.6 ± 0.9; inactivation after orexin

RuR, I_{neAHP} was not different in amplitude from that recorded in apamin alone (unpaired t test: t_{28} = 1.23, p > 0.05), and the average decay was well fit by a single exponential (τ = 2.6 ± 0.01 s, n = 7). In addition, apamin pretreatment did not further reduce I_{neAHP} recorded with RuR. These data suggest that the Ca^{2+} release underlying I_{neAHP} enhancement requires RyRs but does not require IP3R activation. This conclusion is tempered by potential off-target actions of these drugs (e.g., see Taylor and Broad, 1998); so to directly test IP3 involvement, we recorded from DR neurons with a patch solution containing caged-IP3 and used full-field UV flashes (500 ms) to release IP3 into the cytoplasm. Uncaging IP3 failed to induce a membrane current in DR neurons either before or after application of orexin (Fig. 6G, left traces), even though the 5 pulse protocol produced an AHP current that was greatly enhanced by orexin in the same neurons (Fig. 6G, right traces). Similarly, when uncaging was paired with the 5 pulse protocol (500 ms UV pulse started simultaneously with the first depolarization), I_{neAHP} was not altered (paired with UV amplitude 101.2 ± 6.4% of that without UV, n = 5, paired t test: t_{6} = −0.70, p > 0.05). To verify that we were successfully uncaging IP3, we conducted identical recordings from hippocampal CA1 pyramidal neurons, where UV flashes produced an outward current (Fig. 6H), as expected from previous studies showing perisomatic IP3 uncaging and ensuing Ca^{2+} release activates SK channels (Hong et al., 2007; El-Hassar et al., 2011). These results are summarized in Figure 6f. Collectively, these data indicate that enhancement of the SK component of the oeAHP involves activation of ryanodine receptors and Ca^{2+} release from intracellular stores, presumably via CICR, but that activation of IP3Rs are not necessary or sufficient.

Figure 7. Orexin-A broadened action potentials and CACs in DR neurons but did not increase isolated Ca^{2+} currents. A, Action potentials were evoked by brief suprathreshold current pulses before (red, Con) and after orexin-A (blue, Orx, 300 nM). Three superimposed spikes recorded with normal patch solution and ACSF are shown for each condition. B, CACs recorded (voltage steps from −65 mV to −5 mV, 10 ms) with normal internal solution and ACSF containing TTX and synaptic blockers before (red, Con) and after application of orexin-A (blue, Orx, 300 nM). Pharmacologically isolated Ca^{2+} currents were monitored by stepping V_{m} from a holding potential of −65 mV to −25 mV for 30 ms every 30 s (Inset) before (red, Con) and orexin-A (blue, Orx, 300 nM). Superimposed Ca^{2+} currents are from just before orexin-A application and following 2 min of orexin-A application. D, Summary of peak Ca^{2+} current (mean ± SEM) evoked as in C and measured before (Con) and after orexin application (Orx). The difference was not significant (paired t test, p > 0.05, n = 5).
$V_{1/2} = -64.2 \pm 0.7 \text{ mV, } k = -6.5 \pm 0.6)$, indicating that the transient current was reduced without changing voltage dependence (Fig. 8C–E). Because Ca^{2+}-ACSF was used to block voltage-gated Ca^{2+} channels in these recordings, these parameters will be somewhat shifted in the depolarizing direction (Mayer and Sugiyama, 1988). From additional recordings in normal ACSF (data not shown), we estimate that the activation curve was positively shifted by 10 mV, which fits well with previous estimates (Mayer and Sugiyama, 1988) and indicates this transient outward current activated below spike threshold. This, and the finding that the current was largely blocked by 5 mM 4-AP (Fig. 8F), which produced a characteristic late slowing of inactivation (Jackson and Bean, 2007), indicates the current is a subthreshold A-current (Jerng et al., 2004).

In addition to its well-known role in lengthening the interval between action potentials (Connor and Stevens, 1971), sub-
threshold A-currents also function in spike repolarization (Kim et al., 2005; Yuan et al., 2005), and this inhibition by orexin could therefore contribute to spike broadening, increased CACs, and an increase in the SK component of the oeAHP. Consistent with this idea, orexin (300 nm) produced significant broadening of action potentials measured with Ca2+ channels blocked by Co2+-ACSF (spike width at −25 mV in orexin: 108.8 ± 2.9% of control, paired t test: t(5) = 2.57, p < 0.05; data not shown). To more directly test this idea, we applied 4-AP while measuring CACs and the AHP current. 4-AP (5 mM) enhanced the CACs (Fig. 8G) and prolonged the SK-mediated AHP in the same cells (Fig. 8H). Control T50 = 0.48 ± 0.07 s; 4-AP T50 = 0.58 ± 0.09 s, n = 8, paired t test: t(7) = −2.13, p < 0.05). Treatment with 4-AP also occluded further enhancement of CACs by orexin-A (Fig. 8G) and resulted in an IoeAHP whose amplitude was reduced by approximately half (18.2 ± 2.7 pA, n = 8; unpaired t test: t(17) = −4.99, p < 0.05; Fig. 8I) but was not different from that in apamin (unpaired t test: t(29) = 0.14, p > 0.05). Moreover, the average IoeAHP in 4-AP decayed with a single component that was well fit by a single exponential (Fig. 8I; tau = 4.7 ± 0.03 s) like that in apamin. Collectively, these findings suggest that the augmented SK component of the oeAHP results from suppression of an A-current, broader action potentials and enhanced Ca2+ influx, leading to an increase in subplasmal membrane Ca2+2, which is further enhanced by CICR. In contrast, the slower-decaying, apamin-insensitive component of the oeAHP was insensitive to A-current inhibition, indicating that a different Ca2+-dependent mechanism must be involved.

Because emerging evidence suggests that store filling can be modulated by intracellular signaling pathways (Yamasaki-Mann et al., 2010), additional factors contributing to the augmented ISK might be that orexin enhances Ca2+ sequestration, leading to greater store release in response to Ca2+ influx, or that the Ca2+ sensitivity of RyRs or SK channels is increased by orexin signaling. We reasoned that, if these factors are important, identical Ca2+ transients should trigger enhanced ISK following orexin application. To bypass the orexin-enhanced CACs, we used full-field DMNP Ca2+ uncaging (100–200 ms pulses) before and after orexin-A (300 nm) application and compared the evoked outward currents. We found that identical uncaging pulses produced a reproducible, medium-duration outward current before orexin that was blocked by apamin (300 nm; data not shown), and a more slowly decaying current following orexin application that was reminiscent of IoeAHP (Fig. 8J). The average outward current produced by Ca2+ uncaging before orexin was 16.9 ± 2.8 pA, whereas after orexin, the current was 25.0 ± 3.6 pA (n = 5). We computed IoeAHP resulting from uncaging pulses and found that this average current (uvIoeAHP) was reasonably well fit by a single slow exponential (tau = 4.70 ± 0.012 s, n = 5; Fig. 8K, top), which was similar to the decay of IoeAHP in 4-AP (Fig. 8I). In contrast, the decay of IoeAHP produced by 5 pulses in these same neurons was well fit by a double exponential having medium (tau = 0.36 ± 0.004 s) and slow (tau = 5.02 ± 0.012 s) time constants (Fig. 8K, bottom). Moreover, when we computed the total ISK evoked by UV after orexin, by applying apamin (300 nm) after orexin and then subtracting the apamin-insensitive component, we found that it was not any longer than ISK before orexin (T50 before orexin = 0.34 ± 0.02 s; T50 after orexin = 0.30 ± 0.03 s; t(5) = 1.26, p > 0.05; Fig. 8L, left). This differed from the ISK evoked by the 5 pulse protocol, tested in these same cells, which increased significantly in duration (T50 before orexin = 0.33 ± 0.04 s; T50 after orexin = 0.44 ± 0.05 s; t(5) = −2.79, p < 0.05; Fig. 8L, right). It is noteworthy that the prolongation of ISK by orexin obtained here, using patch solution with DMNP, agrees well with findings obtained using normal patch solution (ISK T50 before orexin = 0.35 ± 0.05 s, T50 after orexin = 0.43 ± 0.07 s; t(5) = 3.28, p < 0.05; data not shown). Collectively, these findings suggest that in order for orexin to prolong the ISK and thereby produce the SK component of the IoeAHP, an enhanced Ca2+ influx is required. Nevertheless, because DMNP alters intracellular Ca2+ buffering, this conclusion should be considered tentative. Future experiments using a wider range of Ca2+ release and buffering conditions would be necessary to fully test this conclusion.

The firing produced by orexin-A was slower and less variable than predicted for the depolarizing orexin current

In the final series of experiments, we examined the impact of orexin and the oeAHP on the firing pattern of DR neurons. Because these experiments were conducted with the ACSF heated to 32°C, we first confirmed that orexin-A (300 nm) produced an oeAHP under these conditions. We found that, although the input resistance of DR neurons was lower (393.6 ± 31.4 MΩ; n = 22; normal ACSF with ionotropic receptor blockers), orexin-A still significantly increased both the amplitude (control: 7.84 ± 0.58 mV; orexin: 9.17 ± 0.71 mV, n = 22; paired t test: t(21) = 4.10, p < 0.05, paired t test) and duration (control: 0.30 ± 0.03 s; orexin: 0.55 ± 0.04 s, n = 22; paired t test: t(21) = −5.37, p < 0.05, paired t test) of the late AHP, although, not surprisingly, these changes were smaller than observed at room temperature. Twelve cells were recovered and 10 of 12 were TpH+.

Increasing the late AHP during the orexin-mediated depolarization might be expected to produce slower firing than the depolarization alone. Testing this prediction is complicated by the lack of blockers specific for just the oeAHP, and that the orexin inhibits the A-current and produces a large increase in membrane noise, both of which could increase firing (White et al., 2000). For the oeAHP to decrease orexin-induced firing, the orexin-mediated depolarization would have to produce interspike intervals short enough to be influenced by the oeAHP, and the oeAHP would have to play a more dominant role than A-current and membrane noise in setting the spike interval. In the first test, we injected a previously recorded noisy orexin current (virtual current) scaled to different average values and compared the resulting firing rate (without an oeAHP; Fig. 9A1) with the firing rate evoked by an actual orexin current (with the oeAHP; Fig. 9A2) produced by application of orexin-A (300 nm). The magnitude of the actual current was estimated by the injected current necessary to return membrane potential to baseline during the peak effect of orexin-A (Fig. 9A2, arrow). The firing rate, measured as spikes per second (sp/s), achieved during orexin-A application was lower than that produced by the comparable virtual current (Fig. 9A1), and this firing rate (±SD) fell below the rate-current curve produced by a bracketing range of virtual currents (Fig. 9A3). In a second test, we used a dynamic clamp to introduce a virtual orexin conductance (0.5–2 nS) to generate a noisy, depolarizing orexin current (without the oeAHP). This orexin current was comparable with that produced by 300 nm orexin in these and previous DR recordings (Kohlmeier et al., 2008). We compared the firing evoked by this conductance to the firing produced by subsequent application of orexin-A (300 nm). This also showed that the firing rate evoked by the actual orexin-A current (Fig. 9B2) was lower than that produced by the comparable virtual conductance (Fig. 9B1), and that this firing rate fell below the firing rate-average current curve produced by a range of virtual conductances (Fig. 9B3). These results are sum-
Orexin-A slows steady-state firing and decreases steady-state firing fidelity

To examine how orexin alters responsiveness of DR neurons to other excitatory inputs, we examined the repetitive firing evoked by suprathreshold current steps (5 s, 50–150 pA) delivered from the same baseline membrane potential before and after orexin application. DR neurons show rapid SFA, with the initial firing rate decaying to steady-state firing in only a few interspike intervals. If the oeAHP plays an important role in regulating spiking, we would expect orexin application to increase SFA by reducing steady-state firing. Indeed, application of orexin-A (300 nM) increased SFA by increasing the interval between spikes after the first two spikes and by lowering the steady-state rate (Fig. 10A). While orexin-A had no significant effect on the initial rate (Fig. 10B), it significantly lowered steady-state firing for each current tested (Fig. 10C; repeated-measures ANOVA: $F_{(1,29)} = 14.81, p < 0.05$; post hoc tests $p < 0.05; n = 5$).
Finally, we examined the effect of orexin on the fidelity with which DR neurons could fire action potentials in response to trains of brief suprathreshold current pulses. If the oeAHP plays an important role in regulating excitability dynamics, we expect that orexin would produce a decrease in firing fidelity following spiking onset and the development of the oeAHP. To test this, the pulse amplitude was adjusted to produce a spike for 100% of the population of DR neurons via two distinct mechanisms. We then demonstrated how this action impacts the integrative properties of these neurons.

Discussion
Here we elucidated a new action of orexin that enhanced the AHP of 5-HT DR neurons via two distinct mechanisms. We then demonstrated how this action impacts the integrative properties of these neurons.

Distinct currents underlie the oeAHP
Complete dependence of the oeAHP on Ca\(^{2+}\) influx and elevation of \([\text{Ca}^{2+}]_i\), along with a reversal potential that shifts with E\(_K\) in a Nernstian manner, indicate involvement of Ca\(^{2+}\)-activated K\(^+\) channels rather than the electrogenic Na\(^+\)/K\(^+\) ATPase, as found for some Ca\(^{2+}\)-independent sAHPs (e.g., Pulver and Griffith, 2010; Gulledge et al., 2013). Application of apamin revealed that approximately half of I\(_{\text{oeAHP}}\) resulted from augmented I\(_{SK}\) (tau \(\sim 5.0\) s), whereas the remainder resulted from induction of a slow-AHP-like current (tau \(\sim 5.0\) s).

SK augmentation depends on increased spike-evoked Ca\(^{2+}\) influx resulting from A-current inhibition and CICR
SK current likely derives from SK2 and/or SK3 subunits because mRNA and protein for both localize to the DR (Stocker and Pedarzani, 2000; Sailer et al., 2004). Because the PP2A antagonist okadaic acid did not attenuate the SK component of I\(_{\text{oeAHP}}\) (Fig. 6A), we examined involvement of SK-regulating Ca\(^{2+}\)-store depletion. This \(\alpha\)-1 adrenoceptor enhancement of SK-AHPs in DR neurons (Pan et al., 1994), the SK component of the oeAHP was inhibited by Ca\(^{2+}\)-store depletion. This \(\alpha\)-1 action reportedly involves IP3Rs because IP3 injection transiently (\(<1\) min) lengthened the AHP (Freedman and Aghajanian, 1987). This, however, did not increase the AHP amplitude, and this effect was not prolonged by inhibiting IP3 breakdown. In contrast, the orexin-mediated SK enhancement was inhibited by antagonists.
of RyRs, rather than IP3Rs, and it was not mimicked by IP3 uncaging, which fits with robust RyR2 and minimal IP3 expression within DR (Allen Brain Atlas; www.brain-map.org).

Because these findings suggested CICR involvement, we examined whether orexin enhanced spike-evoked Ca\(^{2+}\) influx and found that orexin broadened both individual action potentials and CACs (Fig. 7). Instead of directly augmenting Ca\(^{2+}\) channel function (Kohlmeier et al., 2008), we found that orexin inhibited a subthreshold A-current (Fig. 8), which is likely critical because 4-AP (Fig. 7) both prolonged baseline I\(_{SK}\) and occluded orexin-mediated SK enhancement, whereas I\(_{SK}\) produced by Ca\(^{2+}\) uncaging pulses was not enhanced by orexin (Fig. 8). Because Kv4.3 mRNA is differentially expressed in the DR (Seròdio et al., 1998), it is likely that spike broadening and increased Ca\(^{2+}\) influx result from orexin-mediated inhibition of A-current, mediated by Kv4.3 channels. This is a novel orexin action, although orexin can inhibit (Yang and Ferguson, 2003; Murai and Akaike, 2005) or increase (Belle et al., 2014) unidentified delayed-rectifier currents in some other neurons.

Strikingly, α-1 receptors also inhibit A-current in DR neurons (Aghajanian, 1985). This was suggested to increase firing by shortening the interspike interval, although spike width and Ca\(^{2+}\) influx were not examined. We confirmed that PE (3 μM) also increased CACs in our slices (M.I. and C.S.L., unpublished observations), suggesting that A-current inhibition, spike broadening, and increased Ca\(^{2+}\) influx may also contribute to α-1 enhancement of SK-AHPs in these neurons. Indeed, PE occluded the entire oeAHP (Fig. 1E), suggesting that α-1 and Orexs share effectors or signaling components downstream of the receptors because α-1 actions remained intact in the absence of Orexs (Fig. 2D). These findings fit well with the previous demonstration that orexin and α-1 receptor signaling converges in activating inward current in DR neurons (Brown et al., 2002).

The apamin-insensitive component of I\(_{oeAHP}\) differs from the classical I\(_{AHP}\)

In contrast to SK enhancement, the apamin-insensitive component of I\(_{oeAHP}\) decayed ~10 times slower (tau ~5 s; Fig. 4F) and was absent before orexin application. Moreover, it was insensitive to store depletion and was not induced or occluded by blocking A-current, but it was induced by intracellular uncaging of Ca\(^{2+}\), indicating different Ca\(^{2+}\) requirements. Its slow time course is reminiscent of the I\(_{AHP}\) (Vogalis et al., 2003) and, like the sAHP (Lee et al., 2005a), its duration was reduced at elevated temperatures. Channels underlying the sAHP have been difficult to identify, and evidence suggests that different K\(^{-}\) channels are involved (for review, see Vogalis et al., 2003; Andrade et al., 2012). Recently, UCL2077 was shown to block the I\(_{AHP}\) in hippocampal pyramidal neurons (Shah et al., 2006) and the orexin-inhibited I\(_{AHP}\) in PVT neurons (Zhang et al., 2010). UCL2077 blocks KCNQ1/2 channels, and knock-out evidence suggests involvement of KCNQ2/3 in sAHPs of CA3 and dentate gyrus neurons (Tzingounis and Nicoll, 2008; Tzingounis et al., 2010). Nevertheless, KCNQ antagonists are not universal blockers of classical sAHPs (Abel et al., 2004).

Another feature of the classical I\(_{AHP}\) is their suppression by some neurotransmitters. Monoamines suppress it via CAMP/ PKA signaling (Madison and Nicoll, 1986; Pedarzani and Storm, 1993), and receptors that reduce CAMP, such as adenosine A\(_1\) and GABA\(_B\) receptors, can modestly increase I\(_{AHP}\) in hippocampal neurons (Haas and Greene, 1984; Gerber and Gähwiler, 1994). However, unlike I\(_{AHP}\) in the hippocampus, forskolin did not alter the oeAHP (Fig. 5f). In the hippocampus, G\(_Q\) activation by acetylcholine and glutamate also inhibits I\(_{AHP}\) (Krause et al., 2002), and I\(_{AHP}\) is suppressed by orexin in PVT neurons via PKC activation (Zhang et al., 2010). Unlike those sAHPs, PKC inhibitors did not alter I\(_{oeAHP}\) or the α-1 augmentation of the SK-AHP (Pan et al., 1994) in DR neurons. Nevertheless, PDBu powerfully suppressed the entire I\(_{oeAHP}\) as reported for α-1 actions (Pan et al., 1994). This suggests that PKC activation is not required for the oeAHP, but that global activation suppresses orexin and α-1-receptor signaling, perhaps via receptor internalization or desensitization (Chuang et al., 1996; Kelly et al., 2008). Thus, while the apamin-sensitive component of I\(_{AHP}\) shares features with classical sAHPs, insensitivity to forskolin, PKC inhibitors and a KCNQ blocker indicates it is novel.

Signaling cascades mediating I\(_{oeAHP}\)

Oxs are generally thought to activate PLC via G\(_{q/11}\) (Sakurai et al., 1998), although their signaling is less well explored in CNS than expression systems, where OxRs couple to multiple G-proteins and second messenger systems (for review, see Kikkonen and Leonard, 2014). Intracellular application of the PLC inhibitor U73122, but not its inactive analog U73343, completely blocked orexin-mediated inward current and the oeAHP, but not a PLC-independent 5-HT-mediated outward current (Fig. 5A–D). This fits with expression system evidence for prominent PLC activation (Holmqvist et al., 2002) and findings from some other neurons, where PLC inhibitors attenuate orexin actions (Muroya et al., 2004; Borgland et al., 2006). However, because neither the inward current nor I\(_{oeAHP}\) depended on IP3 or PKC activation, noncanonical PLC signaling may be involved. While possibilities abound, one consideration is that U73122 has off-target or indirect effects that influence orexin stimulation of PLA2 (Turunen et al., 2012) and that arachidonic acid or its metabolites regulate the inward current and/or the oeAHP. Alternatively, PLC-generated DAG may be converted to the endocannabinoid 2-AG by DAG-lipase, and 2-AG or its metabolites are involved. Expressed OxRs powerfully stimulate 2-AG and arachidonic acid production (Turunen et al., 2012), and inhibition of DAG-lipase blocks OxR-mediated endocannabinoid inhibition of excitatory input to DR neurons (Haj-Dahmane and Shen, 2005). It is therefore noteworthy that both arachidonic acid and 2-AG can directly inhibit Kv4 channels (Amorós et al., 2010) and broaden action potentials (Keros and McBain, 1997).

Functional consequences of the oeAHP

The oeAHP enhanced SFA by reducing steady state, but not initial firing, in response to current steps (Figs. 9; 10), consistent with functions for slow, Ca\(^{2+}\)-dependent AHPs (Faber and Sah, 2003). Dynamic clamp studies revealed that the oeAHP decreases firing-rate variability, an effect particularly relevant in vivo, where the coefficient of variation of firing is ~10-fold greater (coefficient of variation 0.5–1.0; waking) than in our slices (coefficient of variation 0.06–0.1). Increased SFA implies reduced excitability for tonic input, as demonstrated by late spike-failures for pulse-train inputs (5, 10 Hz; Fig. 10,D,E) and a compressed steady-state input–output relation (Fig. 10F). This reflects the high-pass filter function of SFA (Benda and Herz, 2003), which favors spike encoding of rapidly varying inputs. We hypothesize that, during active waking, when orexin neuron firing is highest (Lee et al., 2005b; Mileikovskiy et al., 2005), released orexin will both depolarize and sharpen the high-pass filter characteristics of 5-HT neurons. The oeAHP would help limit and regularize firing in response to tonic input without attenuating the spike encoding of phasic synaptic inputs related to behav-
ioral events (Hajós et al., 2007; Ranade and Mainen, 2009; Sakai, 2011; Liu et al., 2014). This may be especially important for processing reward signals because orexin neurons increase firing during anticipation and acquisition of reward (Hassani et al., 2016) and the firing of most 5-HT DR neurons transition from a tonic increase to a burst during reward acquisition (Li et al., 2016). Thus, orexin inputs could provide an arousal/attention signal that promotes phasic over tonic outflow from raphe neurons, which could affect the relative engagement of postsynaptic and autoreceptors by released 5-HT (Gartside et al., 2000). Accordingly, the loss of orexin signaling in narcolepsy would be expected to impair this signal processing, potentially contributing to the expression of narcolepsy/cataplexy symptoms (Hasegawa et al., 2014) and comorbid symptoms, such as depression, anxiety, and eating disorders (Fortuyn et al., 2011).

References

CrossRef Medline

CrossRef Medline

Innis RB, Nestler EJ, Aghajanian GK (1988) Evidence for G protein media-

