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Abstract 

 

Low molecular weight peptidomimetic inhibitors with hydrophobic pocket binding properties 

and moderate fusion inhibitory activity against HIV-1 gp41-mediated cell fusion were elaborated 

by increasing the available surface area for interacting with the heptad repeat-1 (HR1) coiled coil 

on gp41.  Two types of modifications were tested: 1) increasing the overall hydrophobicity of the 

molecules with an extension that could interact in the HR1 groove, and 2) forming symmetrical 

dimers with two peptidomimetic motifs that could potentially interact simultaneously in two 

hydrophobic pockets on the HR1 trimer.  The latter approach was more successful, yielding 40 – 

60 times improved potency against HIV fusion over the monomers.  Biophysical 

characterization, including equilibrium binding studies by fluorescence and kinetic analysis by 

Surface Plasmon Resonance, revealed that inhibitor potency was better correlated to off-rates 

than to binding affinity. Binding and kinetic data could be fit to a model of bidentate interaction 

of dimers with the HR1 trimer as an explanation for the slow off-rate, albeit with minimal 

cooperativity due to the highly flexible ligand structures. The strong cooperativity observed in 

fusion inhibitory activity of the dimers implied accentuated potency due to the transient nature of 

the targeted intermediate.  Optimization of monomer, dimer or higher order structures has the 

potential to lead to highly potent non-peptide fusion inhibitors by targeting multiple hydrophobic 

pockets. 

 

Keywords: HIV-1 gp41; hydrophobic pocket; fusion inhibition; peptidomimetic inhibitors, 

bivalent inhibitors; fluorescence; surface plasmon resonance; kinetics; cooperativity.
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1. Introduction 

The hydrophobic pocket (HP) on the surface of the gp41 trimeric HR1 coiled coil is an 

important target for antiretroviral drugs against HIV fusion.
1
 The pocket sits at the interface 

between HR1 and helical HR2 segments which wrap down the sides of the coiled coil to form a 

six-helix bundle structure upon successful virus – host membrane fusion (Figure 1A).
2, 3

 The 

pocket is exposed to inhibitors for 20 – 30 minutes during a conformational change of gp41 prior 

to six-helix bundle formation.
4
 Small molecules that bind in this pocket have been developed 

into low to sub-µM inhibitors of HIV entry,
5-8

 but so far efforts at small molecule discovery have 

failed to achieve the potency afforded by C-peptides derived from HR2.
9, 10

 These are nM 

inhibitors, including T20 which is an FDA-approved fusion inhibitor.
11

 Non-peptide inhibitors of 

HIV fusion could have advantageous properties as drugs, such as longer half-life and lower cost 

and the potential for oral bioavailability.  

One approach to improving potency of small molecules is to extend them to form 

additional interactions with HR1 beyond the hydrophobic pocket.  HR1 has multiple potential 

interactive sites both within a single groove and between adjacent grooves of the trimer.  

Bidentate ligands are generally 1 – 2 orders of magnitude more potent than their monomeric 

counterparts against targets with more than one binding site.
12, 13

 To our knowledge, this concept 

has not been tested with small molecule inhibitors targeting gp41.  For C-peptides, the effect of 

multivalent interactions is clear.  18 residue HP-binding C-peptides containing the motif 

WxxWDxxI are low µM binders
14, 15

 and fusion inhibitors,
16

, while 34 residue C-peptides have 

low nM activity.
17

 Dimerization  of 22 residue helical C-peptides improved activity by a factor of 

9.
18

 Similarly, D-peptides designed to bind in the hydrophobic pocket
19

 have activity improved 
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by 10 – 300 fold upon dimerization with a long polyethylene glycol (PEG) linker, presumably by 

simultaneous interactions in two HP’s of the trimer.
20, 21

  

An important consideration in designing extension or dimerization of small molecule 

hydrophobic pocket binders is selection of a tether that will not disturb the binding mode. Helical 

peptidomimetics are suitable candidates for this approach because they are designed to emulate 

the amphipathic C-peptide helix, which has HP binding residues on one face of the helix (Fig 

1B).  

 
Figure 1.  Experimental and model structures of the gp41 HR1 – HR2 domain 

and interactions.  A. Homology modeling of HIV-1 HXB2 ectodomain from 

the structure of the corresponding SIV domain (pdb 2EZO).  The HR1 trimer 
is shown as a space filling model in tan, and loop and HR2 residues are shown 

as a ribbon representation in yellow; B. Expansion of the hydrophobic pocket 

region from A.  C, D. Modeled low energy structures of two subunit and three 
subunit peptidomimetics with Trp and Leu residues filling the pocket.  See 

Figure 2 for the structures of the peptidomimetic inhibitors. 
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Peptidomimetic inhibitors are expected to have side chains occupying the pocket while the non-

peptidic “backbone” is exposed above the pocket and available for tethering.  

We previously examined a combinatorial library of three-subunit peptidomimetics 

containing a central aryl-alkoxy scaffold replacing the peptide backbone, H2N-R
3
-[R

2
]-R

1
-OH, as 

well as the precursor two-subunit library, O2N-[R
2
]-R

1
-OH , developed by the Boger group.

22
 

Screening with a binding assay for the gp41 hydrophobic pocket revealed a clear propensity for 

aromatic residues at R
1
 and R

2
, especially for Trp, Nap and Phe4Cl.

23
 Ile was also well-tolerated 

at R
1
 in three subunit compounds with an aryl R

3
, consistent with the inhibitors emulating the 

conserved WWI motif of gp41 C-peptides. The compounds H2N-Asn-[Trp]-Trp-COOH (KI = 0.8 

µM, IC50
CCF

 = 6 µM) and H2N-Trp-[Trp]-Leu-COOH (KI = 1.3 µM, IC50
CCF

 = 5 µM) were 

among the most potent compounds.  In the absence of R
3
 in the two subunit compounds, R

2
 = 

Trp or Nap and R
1
 = Trp, Nap or Phe4Cl were the optimal choices.  Bioactivity was reduced by a 

factor of ~4 compared to the three subunit compounds listed.
24

 

Most low energy simulated structures adopted the predicted binding pose in which the 

side chains reached down into the pocket and the aryl alkoxy “backbone” lay above the pocket 

(Figure 1C, D). NMR paramagnetic relaxation enhancement measurements on two inhibitors of 

this class, O2N-[HoPhe]-Ala-OH and O2N-[Ala]-Nap-OH confirmed this binding mode.
24

   We 

selected two subunit compounds with R
1
 = Trp or Phe4Cl and R

2
 = Trp to explore attachment of 

a tether to the aryl alkoxy moiety, and to evaluate the effect of extension or dimerization on 

binding affinity and inhibition of virus – cell and cell – cell fusion.  

 

2. Materials and Methods 

2.1 Synthetic chemistry 
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2.1.1. Sources  3-fluoro-4-nitrobenzoic acid was purchased from Matrix Scientific (Fisher), 3-(2-

hydroxyethyl)indole, Zn nanopowder, was purchased from Sigma-Aldrich.  THF was purchased 

from EMD Millipore (VWR).  4-chlorobenzylalcohol was purchased from Alfa Aesar.  L-

tryptophan tert-butyl ester hydrochloride was purchased from Chem-Impex International.   

2.1.2 Preparation of the aryl subunits The aryl subunits were synthesized following the 

general procedure described previously.
22

 

1. R
2
 = 3-ethyleneindole.  Sodium hydride (60%, 0.5 g, 12.5 mmol) and 3-(2-

hydroxyethyl)indole (1.0 g, 5.4 mmol) were stirred in 10ml THF at 0°C for 15 minutes, after 

which 3-fluoro-4-nitrobenzoic acid (1.04 g, 6.45 mmol) was added.  The mixture was stirred at 

0°C overnight, and then quenched with aqueous saturated NH4Cl, diluted with ethyl acetate, 

washed with 0.1M HCl (50ml, x 2).  The organic layer was concentrated and purified by silica 

gel chromatography (10:1 DCM/ MeOH, 1% acetic acid) , affording 2.6 g pure product (74%). 

Data for 1: 
1
H NMR (DMSO)  7.87 (d, 1H, J = 8.4 Hz), 7.81 (s, 1H), 7.62 (dd, 1H, J = 8.3 Hz, 

0.8 Hz), 7.58 (d, 1H, J = 7.8 Hz), 7.36 (d, 1H, J = 8.0 Hz), 7.23 (d, 1H, J = 1.9 Hz), 7.07 (t, 1H, J 

= 7.3 Hz), 6.98 (t, 1H, J = 7.4 Hz), 4.43 (t, 2H, J = 6.9 Hz), 3.18 (t, 2H, J = 6.9 Hz). 

2. R2 = 4-chlorobenzyl.  Sodium hydride (60%, 0.68 g, 17 mmol) and 4-chlorobenzylalcohol 

(1.21 g, 8.5 mmol) were stirred in 15ml THF at 0°C for 15 minutes, after which 3-fluoro-4-

nitrobenzoic acid (1.5 g, 8.1 mmol) was added.  The mixture was stirred at 0°C overnight, and 

then quenched with aqueous saturated NH4Cl, diluted with ethyl acetate, washed with 0.1M HCl 

(75ml, x 2) and brine.  The organic layer was concentrated and separated by silica gel 

chromatography (3:2:0.1 hexanes/ ether/acetic acid  10 : 1 DCM/MeOH) to yield 2.2 g product 

5 (89%). Data for 2: 
1
H NMR (DMSO)  8.00 (d, 1H, J = 8.3 Hz), 7.86 (d, 1H, J = 1.4 Hz), 7.67 

(dd, 1H, J = 8.3 Hz, 1.5 Hz), 7.49 (s, 4H), 5.39 (s, 2H). 
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2.1.3 Preparation of 2-unit peptidomimetics followed procedures similar to those described 

previously.
22

 

3a. (O-tBu) Compound 1 (605 mg, 1.85 mmol) and L-Trp t-butyl ester (550 mg, 1.85 mmol) 

were combined in 12ml dry DMF to which EDCI (426 mg, 2.22 mmol), HOBt (300mg, 2.22 

mmol) and DIPEA (0.97 ml, 5.57 mmol) were added.  The solution was stirred overnight, then 

diluted with EtOAc, washed with sodium bicarbonate, 10% NaCl (x2), brine, and then 

concentrated.  850 mg of product was obtained on a flash column in 40% EtOAc /hexane, Rf = 

0.35 and used immediately for the next reaction.   The product (850 mg, 1.49 mmol) was reduced 

by dissolving it in 24 ml of 5:1 acetone : water and adding Zn nanopowder (978 mg, 15.0 mmol), 

and NH4Cl (1.2 g, 22.4 mmol).  An instantaneous exothermic reaction occurred, after which the 

mixture was filtered, diluted with 1 : 1 EtOAc/ether, washed with bicarbonate and brine and 

evaporated. The solid was triturated and purified by silica gel chromatography (50% 

EtOAc/hexane) to afford 3 in quantitative yield.  Data for 3a: Rf =0.30 (50% EtOAc/hexane); 

MS calc. 538.64, found (M-H)
-
 537.12; 

1
H NMR (CDCl3)  8.16 (br, 1H), 8.05 (br, 1H), 7.65 (d, 

1H, J = 7.9 Hz), 7.60 (d, 1H, J = 7.9 Hz), 7.36 (d, 1H, J = 8.0 Hz), 7.25 (m, 1H), 7.20 (m, 2H), 

7.16 – 6.99 (m, 6H), 6.54 (d, 1H, J = 8.1 Hz), 6.50 (d, br, 1H, J = 7.52), 5.02 (m, 1H), 4.19 (t, 

2H, J = 6.7 Hz), 3.37 (m, 2H), 3.22 (t, 2H, J = 6.7 Hz), 1.40 (s, 9H).   

3. Ester 3a (213 mg, 0.396 mmol) was taken up in dry HCl in dioxane (4 M, 6.0 mL), stirred for 

1.5 h, and concentrated. Purification by silica gel chromatography (1:4 MeOH:DCM) and 

filtration through a plug of Celite using acetone as the solvent yielded carboxylic acid 3 (180 mg, 

94%).  Data for 3: MS calculated 482.53, found (M-H)
-
 481.30; 

1
H NMR (acetone)  7.68 (m, 

2H), 7.41 – 7.25 (m, 6H), 7.13 – 6.96 (m, 4H), 6.65 (d, 1H, J = 7.7 Hz), 5.00 (m, 1H), 4.19 (t, 

2H, J = 6.6 Hz), 3.47 – 3.35 (m, 2H), 3.24 (t, 2H, J = 6.6 Hz). 
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4a. (O-tBu) Compound 4 was prepared from compound 2 using the same method as for 

preparation of compound 3.  Purification by silica gel chromatography (40% EtOAc/hexane) 

yielded 4 (781 mg, 92%).  Data for 4: Rf = 0.18 (40% EtOAc/ hexane); 
1
H NMR (CDCl3)  9.14 

(br, 1H), 8.32 (d, 1H, J = 8.4 Hz), 7.94 (s, 1H), 7.58 (d, 1H, J = 7.9 Hz), 7.30 – 7.24 (m, 6H), 

7.13 – 7.07 (m, 2H), 7.02 (m, 2H), 6.92 (d, 1H, J = 7.4 Hz), 4.97 (q, 1H, J = 7.0 Hz), 4.81 (br, 

2H), 3.36 (m, 4H)  

4.  Ester 4a (168 mg, 0.324 mmol) was taken up in dry HCl in dioxane (4 M, 3.0 mL), stirred for 

1 h, and concentrated. Purification by silica gel chromatography (1:9 MeOH:DCM) yielded 

carboxylic acid 4 (93.2 mg, 62%). Data for 4: MS Calc. 463.91, found (M-H)
-
 462.17; 

1
H NMR 

(acetone)  7.68 (d, 1H, J = 7.8 Hz), 7.48 – 7.36 (m, 6H), 7.30 – 7.28 (m, 2H), 7.08 (t, 1H, J = 

7.7 Hz), 7.01 (t, 1H, 7.4 Hz), 6.68 (d, 1H, J = 8.0 Hz), 5.04 (s, 2H), 5.00 (br, ~1H), 3.5-3.4 (m, 

2H). 

2.1.4 Preparation of bivalent compounds 

5.  Solution of amine 3a (543 mg, 1.01 mmol) and succinic anhydride (134 mg, 1.33 mmol) in 

THF (10 mL) was stirred for 4 h at 65°C. Purification by silica gel chromatography (7:3 

EtOAc/hexane) afforded 5 (637 mg, 99%).  Data for 5: Rf = 0.40 (10:1 DCM:MeOH). 
1
H NMR 

(CDCl3)  8.75 (s, 1H), 8.65 (s, 1H), 8.16 (d, 1H, J = 8.2 Hz), 7.72 (s, 1H), 7.57 (d, 1H, J = 7.9 

Hz), 7.53 (d, 1H, J = 7.3 Hz), 7.28 – 7.22 (m, 3H), 7.12 – 6.99 (m, 5H), 6.96 (d, 1H, J = 1.8 Hz), 

6.89 (d, 1H, J = 7.6 Hz), 6.84 (d, 1H, J = 1.7 Hz), 5.00 (q, 1H, J = 7.4 Hz, 5.8 Hz), 3.99 (t, 2H, J 

= 5.5 Hz), 3.44 – 3.29 (m, 2H), 3.02 (t, 2H, J = 5.5 Hz), 2.54 (t, 2H, J = 6.1 Hz), 2.20 (t, 2H, J = 

5.8 Hz), 1.42 (s, 9H). 

6. Solution of amine 4a (456 mg, 0.88 mmol) and succinic anhydride (111 mg, 1.10 mmol) in 

THF (8 mL) was stirred overnight at 54°C. Purification by silica gel chromatography (4:1 
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EtOAc/hexane  EtOAc) afforded 6 (306 mg, 56%).  Data for 6: 
1
H NMR (CDCl3)  8.86 (s, 

1H), 8.21 (d, 1H, J = 8.2 Hz), 8.08 (s, 1H), 7.57 (d, 1H, J = 7.7 Hz), 7.30 – 7.27 (m, 4H); 7.22 – 

7.20 (m, 2H), 7.11 – 7.07 (m, 2H), 7.04 – 7.00 (m, 2H), 6.95 (d, 1H, J = 7.6 Hz), 4.98 (q, 1H, J = 

7.3 Hz, 5.7 Hz), 4.82 (s, 2H), 3.42 – 3.29 (m, 2H), 2.69 – 2.58 (m, >4H), 1.41 (s, 9H). 

7  Solution of triethylene glycol diamine (H2N-(CH2CH2O)3–CH2CH2NH2) (24.6 mg, 0.128 

mmol), carboxylic acid 5 (130. mg, 0.204 mmol), EDCI.HCl (54.0 mg, 0.282 mmol), HOAt 

(37.2 mg, 0.273 mmol) and DIPEA (0.11 mL, 0.63 mmol) in DMF (2.0 mL) was stirred for 18 h. 

Purification by silica gel chromatography (10:1 DCM:MeOH) afforded the intermediate tBu 

ester-protected dimer (143 mg). Data for tBu ester-protected dimer: 
1
H NMR (CDCl3)  9.32 (s, 

br, 1H), 8.95 (s, br, 1H), 8.13 (d, 1H, J = 8.5 Hz), 7.99 (s, 1H), 7.86 (s, 1H), 7.55 (m, 2H), 7.32 

(d, 1H, J=7.9 Hz), 7.26 (d, 1H, J = 8.5 Hz), 7.22 (s, br, 1H), 7.08 (m, 3H), 7.00 (m, 2H), 6.95 (d, 

1H, J=1.9 Hz), 6.91 (d, 1H, J=7.5 Hz), 6.86 (t, 1H, J=5.1 Hz), 4.98 (q, 1H, J=7.0 Hz), 4.01 (t, 

2H, J=5.9 Hz), 3.52 (br, 4H), 3.46 (t, 2H, J=4.6 Hz), 3.38 (m, 4H), 3.06 (t, 2H, J=5.4 Hz), 2.36 

(m, 4H), 1.41 (s, 9H). 

This intermediate (143 mg) was taken up in dry HCl in dioxane (4 M, 2.0 mL), stirred for 70 

min, and concentrated under a stream of Ar. Purification by silica gel chromatography (10:1 

DCM:MeOH  4:1 [90:10:0.6:0.6 CH2Cl2:MeOH:H2O:NH4OH]:MeOH) afforded dimer 7 (55.4 

mg, 41% over 2 steps). Data for 7: Rf = 0.20 (10:1 DCM:MeOH); MS calculated: 1335.43 

(ammonium salt), found: (M-H)
- 
1333.83; 

1
H NMR (DMSO)  9.09 (s, 0.5H), 9.02 (s, 0.5H), 

8.73 (d, 0.6H, J = 7.5 Hz), 8.11 (d, 1H, J=8.2 Hz), 8.05 (m, 2H), 7.64 (m, 1H), 7.55 (t, 1H, J=7.5 

Hz), 7.45 (m, 2H), 7.33 (m, 4H), 7.25 (d, 1H, J = 8.1 Hz), 7.18 (d, 1H, J =2.0 Hz), 7.11 – 6.82 

(m, 4H), 4.68 (m, 1H), 4.26 (m, 2H), 3.41 (m, 4H), 3.24 (m, 6H), 2.62 (q, 2H, J = 7.6 Hz), 2.43 

(m, 4H). 
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8. Solution of triethylene glycol diamine (H2N-(CH2CH2O)3–CH2CH2NH2) (47.4 mg, 0.246 

mmol), carboxylic acid 6 (306 mg, 0.493 mmol), EDCI.HCl (117 mg, 0.610 mmol), HOAt (81.4 

mg, 0.598 mmol) and DIPEA (0.26 mL, 1.49 mmol) in DMF (4.0 mL) was stirred for 18 h and 

then concentrated. Purification by silica gel chromatography (10:1 DCM:MeOH) afforded the 

intermediate tBu ester-protected dimer (107 mg) along with 6 (159 mg).  Data for tBu-ester-

protected dimer: 
1
H NMR (CDCl3)  8.91 (s, br, 1H), 7.58 (d, 1H, J=7.8 Hz), 7.31 (s, 1H), 7.25 

(m, 5H), 7.16 – 7.03 (m, 6H), 6.94 (d, 1H, J=2.1 Hz), 6.85 (d, 1H, J=7.5 Hz), 4.99 (1H), 4.98 (s, 

2H), 3.59 (m, 4H), 3.51 (m, 2H), 3.41 (m, 4H), 2.64 (m, 4H), 1.41 (s, 9H). 

This intermediate (107 mg) was taken up in dry HCl in dioxane (4 M, 1.5 mL), stirred for 65 

min, and concentrated under a stream of Ar. Purification by silica gel chromatography 

(90:10:0.6:0.6 CH2Cl2:MeOH:H2O:NH4OH  9:1 [90:10:0.6:0.6 CH2Cl2:MeOH:H2O:NH4OH]: 

MeOH) afforded dimer 8 (17.8 mg, 6% over 2 steps). Data for 8: MS calc 1296.4 (ammonium 

salt), found (M-H)
-
 1295.65; 

1
H NMR (DMSO)  9.40 (s, br, 0.3H), 9.29 (s, br. 0.6H), 7.98 (m, 

2H), 7.57 (dd, 2H, J=6.9, 2.1 Hz), 7.52 (d, 1H, J=6.9 Hz), 7.45 (dm 2H, J=8.6 Hz), 7.40 (s, 1H), 

7.35 (d, 1H, J=8.1 Hz), 7.27 (d, 1H, J=8.1 Hz), 7.22 (m, 1H), 7.07 (m, 1H), 6.99 (t, 1H, J=7.7 

Hz), 6.85 (t, 1H, J=7.2 Hz), 4.89 (1H, d, J=5.0 Hz), 4.68 (m, 2H), 4.13 (q, 4H, J=5.1 Hz), 2,66 

(m, 2H), 2.35 (m, 4H).  (Note: A residual water peak at 3.33 ppm masks peaks in that region) 

2.1.5 Preparation of extended monomers 

9. To a solution of indole-3-propionic acid (0.62 g, 3.3 mmol) and 6-aminohexanoic acid methyl 

ester* (0.60 g, 3.3 mmol) in 20 mL DMF were added EDCI.HCl (0.76 g, 4.0 mmol), HOBt (0.54 

g, 4.0 mmol) and DIPEA (2.0 ml, 12 mmol) and the resulting mixture was stirred overnight. It 

was then diluted with EtOAc (120 mL), washed with conc. aq. NaHCO3 (30 mL), 10% NaCl (30 

mL), brine (30 mL), and concentrated. The resulting methyl ester intermediate was taken up in 
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4:1 THF:MeOH (30 mL) and aq. NaOH (25%, 5 mL) was added. After the reaction mixture was 

stirred overnight, it was quenched with aq. HCl (2.4 M, 50 mL) and extracted with EtOAc (2 x 

100 mL). Combined organic extracts were washed with brine (30 mL) and concentrated 

affording 9 (1.22 g, 100%). Data for 9: MS calc (M-H)
-
 301.1552, found 301.15; NMR (CDCl3) 

 8.37 (s, 0.9H), 7.57 (d, 1H, J = 7.8 Hz), 7.33 (d, 1H, J = 7.3 Hz), 7.16 (m, 1H), 7.09 (m, 1H), 

6.97 (s (br), 1H), 5.59 (s, 0.9H), 3.11 (br, 4H), 2.57 (br, 2H), 2.26 (t, 2H, J = 7.4 Hz), 1.53 (br, 

2H), 1.31 (br, 2H), 1.14 (br, 2H). 

10.  To a solution of carboxylic acid 9 (75.4 mg, 0.249 mmol) and amine 3a (149 mg, 0.276 

mmol) in 2.0 mL dry DMF were added EDCI.HCl (56.5 mg, 0.29 mmol), HOAt (41.8 mg, 0.31 

mmol) and DIPEA (0.13 ml, 0.75 mmol) and the resulting mixture was stirred for 48 h. It was 

then diluted with EtOAc (30 mL), washed with conc. aq. NaHCO3 (15 mL), 10% NaCl (15 mL), 

brine (15 mL), and concentrated. Purification by silica gel chromatography (4:1 EtOAc:hexanes 

 EtOAc) afforded tBu ester-protected intermediate (205 mg, 100%). Rf = 0.30 (4:1 

EtOAc:hexanes). 

This intermediate (153 mg) was taken up in dry HCl in dioxane (4 M, 2.5 mL), stirred for 2 h, 

and concentrated. Purification by silica gel chromatography (10:1 DCM:MeOH) afforded 10 

(31.8 mg, 22%). Data for 10: Rf = 0.18 (9:1 DCM:MeOH); MS calc: 766.88, found (M-H)
-
 

765.48; 
1
H NMR (acetone)  8.34 (s, 0.4H), 8.32 (s, 0.5H), 8.15 (s, 0.7H), 7.67 (m,2H), 7.56 (d, 

1H, J = 7.8 Hz), 7.47 (s (br), 1H), 7.41 (m, 2H), 7.35 (d, 2H, J = 8.2 Hz), 7.27 (br, 2H), 7.18 (t, 

1H, J =5.5 Hz), 7.12 – 6.96 (m, 7H), 4.99 (m, 1H), 4.29 (t, 2H, J = 6.2 Hz), 3.52-3.35 (m, 2H), 

3.24 (t, 2H, J = 6.4 Hz), 3.18 (q, 2H, J = 6.4 Hz), 3.07 (t, 2H, J = 7.6 Hz),  2.56 (t, 2H, J = 7.6 

Hz), 2.14 (t, 2H, J = 7.6 Hz), 1.53 (t, 2H, J = 7.6 Hz), 1.43 (t, 2H, J = 7.6 Hz), 1.25 (m, 2H). 
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11.  To a solution of carboxylic acid 9 (60.0 mg, 0.198 mmol) and amine 4a (102 mg, 0.2 mmol) 

in 2.0 mL dry DMF were added EDCI.HCl (58.4 mg, 0.305 mmol), HOAt (33.4 mg, 0.245 

mmol) and DIPEA (0.10 ml, 0.57 mmol) and the resulting mixture was stirred overnight. It was 

then diluted with EtOAc (30 mL), washed with conc. aq. NaHCO3 (15 mL), 10% NaCl (15 mL), 

brine (15 mL), and concentrated. Purification by silica gel chromatography (19:1 DCM:MeOH) 

afforded tBu ester-protected intermediate (141 mg, 89%). Rf = 0.24 (10:1 DCM:MeOH). 

This intermediate (78.5 mg) was taken up in dry HCl in dioxane (4 M, 1.5 mL), stirred for 2 h, 

and concentrated. Purification by silica gel chromatography (9:1 DCM:MeOH) afforded 11 (45.7 

mg, 63%). Data for 11: Rf = 0.18 (9:1 DCM:MeOH); MS calc. 748.27, found (M-H)
-
 746.44 

1
H 

NMR (acetone)  10.01 (s, br, 0.3H), 9.87 (s, br, 0.6H), 8.51 (s, 0.7H), 8.32 (d, 1H, J=8.0 Hz), 

7.67 (d, 1H, J=7.7 Hz), 7.55 (m, 2H), 7.46 (m, 3H), 7.43-7.31 (m, 6H), 7.27 (s, 1H), 7.10-6.95 

(m, 5H), 5.02 (m, 1H), 3.50 (dd, 2H, J=14.4, 4.8 Hz), 3.37 (m, 2H), (m, 2H), 3.04 (t, 2H, J=7.2 

Hz), 2.52 (t, 2H, J=7.8 Hz), 2.37 (t, 2H, J=7.4 Hz), 2.22 (q, 2H, J=5.8 Hz), 1.62 (t, 2H, J=7.4 

Hz), 1.44 (t, 2H, J=7.4 Hz), 1.29 (m, 2H). 

2.2 Assays 

2.2.1 Fluorescence binding assay Inhibition constants Ki for binding in the hydrophobic 

pocket were determined using a fluorescence intensity assay as previously described.
14

  

Fe
II
(env2.0)3 was used to mimic the hydrophobic pocket in the gp41 NHR coiled coil.  Env2.0 

has the sequence bpy-GQAVEAQQHLLQLTVWGIKQLQARILAVEKK-amide, where bpy is 

2,2-bipyridine-5-carboxylate, a bidentate ferrous iron chelator that assures the trimeric structure 

of the NHR upon metal binding.  Underlined residues occur in WT HXB2 gp41. C-peptide 

C18e2.0-FL (Ac-MTWBEWDREIBNYTSLIC, B = -aminoisobutyric acid, WT residues 

underlined) labeled with fluorescein at the cysteine residue, was used to probe inhibitor binding.  
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Quenching of C18e2.0-FL occurred upon addition of Fe
II
(env2.0)3, with a KD = 0.8 µM and a 

minimal fractional fluorescence for the complex = 0.072. KI was determined by measuring the 

dose dependent fluorescence recovery in the presence of a competitive inhibitor.  7.2 µM 

Fe(env2.0)3 (measured as concentration of HP binding sites, with three equivalent sites per 

trimer) and 30 nM C18e2.0FL were used in the competitive inhibition experiments, with serial 

dilution of the inhibitors in the range 0.39 – 400 µM, in Tris-acetate buffer at pH 7.0 and 4% 

DMSO.
25

  Concentration of dimeric inhibitors was calculated as one molecule per dimeric unit.  

12 points per binding curve were measured in triplicate for each compound.  Fractional 

fluorescence data were fit to equations (3) and (4) for 1:1 ligand : HP binding (Section 3.3).  For 

1:2 ligand : HP binding, data were fit by numerical solution (Mathcad, Mathsoft) of the equation         

  



R L 
K

D   RL;  KD 
[R][L]

[RL]
;  Lt  [L] [RL]

R  I 
K

I1   RI; KI1 
[R][I]

[RI]
;  R t  [R] [RL] [RI] 2[R2I]

RIR 
K

I2   R2I;  KI2 
[RI][R]

[R2I]
;  It  [I] [RI] [R2I]

                          (1)

 

 

where Lt, Rt and It are the concentrations of probe, HP binding sites in receptor Fe(env2.0)3,  and 

inhibitor, respectively, KI1 and KI2 are the inhibition constants for the first and second binding 

interactions.  The observed fractional fluorescence was calculated from equation (3).   

The fit of calculated to observed data was determined from the sum of squares (equation 

(2)): 

  



SSQ  {max((| Fobs,i

i1

12

 Fcalc,i | i ),0)}2
     (2) 
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where Fobs,i and Fcalc,i are the fractional fluorescence and si is the standard deviation of each data 

point.  

2.2.2 Surface Plasmon Resonance Experiments Experiments were carried out on a Biacore 

T100 instrument.  A CM5 sensor chip surface was activated by injecting 360 µl EDC/NHS 

(freshly prepared by mixing 5 mM EDC and 5 mM NHS (1:1 v/v) in biacore HBS-EP buffer), 

followed by introduction of 150 µl PDEA (80 mM in 0.1 M sodium borate buffer, pH 8.5) at a 

flow rate of 20 µl/min. The bioreceptor Fe
II
(envC)3 (envC = bpy-

GQAVEAQQHLLQLTVWGIKQLQARI(d)C-amide, WT HXB2-Env residues underlined)) was 

then bound to the sensor chip surface by injecting 150 µl (5 µM Fe
II
(envC)3 in 25 mM Tris-

acetate buffer, pH 7.0) for 2 – 9 minutes at 10 µl/min.  Unreacted disulfide surface was 

deactivated with 50 µl L-cysteine (50 mM in 0.1 M sodium acetate buffer, 1 M NaCl, pH 4.5) 

followed by a wash with 200 µl of freshly prepared 1 mM ferrous ammonium sulfate at 20 

µl/min, to ensure that any ferrous ion leached at low pH was restored.  Any non-specifically 

bound material was removed with 50 µl of 500 mM NaCl at 50 µl/min.  An equivalent reference 

surface was generated using the same procedure as above excluding the Fe
II
(envC)3 coupling 

step.  Analytes were detected at serially increasing concentrations from 0.098 to 50 µM in Hepes 

buffered saline (20 mM Hepes, 150 mM NaCl) at pH 7.0 containing 1% DMSO, using a 60 s 

association time and 300 s dissociation time.  DMSO bracketing was used to correct the 

refractive index.  Analysis of sensorgram data was carried out with Biacore Biaevaluation 

software. 

2.2.3 Cell-cell Fusion Assay Cell-cell fusion was measured using cell lines obtained through the 

NIH AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH. Target 

cells were TZM-bl cells (#8129, contributed by J.C. Kappes, X. Wu and Tranzyme Inc.) 
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expressing CD4, CCR5 and CXCR4,
26

 and containing an integrated reporter gene for firefly 

luciferase under control of HIV-1 LTR.
27

  Effector cells were HL2/3 (#1294, contributed by B.K. 

Felber and G.N. Pavlakis) which produce HXB2 Env, Tat and Rev.
28

 Serially diluted inhibitors 

were added to 96 well plates containing 25,000 TZM-bl cells per well cultured overnight.  

50,000 HL2/3 cells were added per well, and fusion allowed to proceed for 6 hours in reduced 

serum medium (Gibco) with a final concentration of 1% DMSO. Luciferase expression was 

measured using Luciferase Assay Reagent (Promega) according to the manufacturer’s 

instructions. Controls containing 1% DMSO with and without HL2/3 cells were measured for 

each compound, and experiments were performed in triplicate. 

2.2. 4 Viral Replication and Attachment Assays Inhibition of HIV-1 replication was 

determined in CCR5- and CXCR4-tropic MAGI antiviral assays and inhibition of HIV-1 

attachment/entry was determined in CCR5-tropic MAGI attachment assays as previously 

described.
29, 30

  HIV-1 isolates and cells were obtained from the NIH AIDS Research and 

Reference Reagent Program, Division of AIDS, NIAID, NIH, as follows:  HIV-1 Ba-L from 

Suzanne Gartner, Mikulas Popovic, and Robert Gallo.
30, 31

 HIV-1 IIIB from Robert C. Gallo.
30, 32

  

MAGI-CCR5 cells from Dr. Julie Overbaugh.
33, 34

 For MAGI antiviral assays, MAGI-CCR5 

cells were grown overnight in 96 well plates in DMEM supplemented with 10% FBS, using 

10,000 cells per well.  The following day the medium was removed and compounds diluted in 

medium were added (6 dilutions in triplicate at each dilution), followed by the addition of either 

HIV-1 Ba-L (CCR5-tropic assay) or HIV-1 IIIB (CXCR4-tropic assay) at approximately ten 

50% tissue culture infective doses per well (~10 TCID50/well).  Assay plates were incubated for 

48 hours, after which medium was removed and HIV-1 Tat-induced β-Gal enzyme expression 

was determined by chemiluminescence using Tropix Gal-Screen (Applied Biosystems) 
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according to the manufacturer’s instructions.  MAGI attachment assays were performed 

similarly, but with a washout of unbound virus and compounds three (3) hours post-infection.  

Assays were conducted at a serum concentration of 2%. 

2.2.5 Cytotoxicity Assay The cytotoxic effect of the compounds was determined using the 

identical cell culture procedure to that described above for viral replication or cell-cell fusion, 

but measuring cell viability, using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

(4-sulfophenyl)-2H-tetrazolium (MTS, CellTiter 96 reagent; Promega; used for MAGI assays) or 

using a resazurin cell viability reagent (Alamar Blue or Presto Blue, Life Technologies; used for 

cell-cell fusion assays) following the manufacturers’ protocols. 

2.3 Computational docking 

Ligand charges and low energy conformations were obtained using OpenEye software
35, 36

 

(fixpka, molcharge, omega2-2.5.1.4 and szybki, OpenEye Scientific Software, Santa Fe, NM. 

http://www.eyesopen.com).  Compounds were docked into pdb structure 3P7K using Autodock 

Vina.  A model of bivalent binding of the dimer 7 (Figure 3) was obtained using low energy 

conformers of two partial structures, split at the edge of the PEG3 linker.  Structures were docked 

and linker dihedrals were manually adjusted to reconnect the two parts.  The local geometry was 

then optimized and clashes removed using the default minimization protocol in Chimera (UCSF) 

(Potential energy of complex -12.4 x 10
3
, RMSD 0.0244 Å over 2460 atoms). 

3. Results 

3.1 Synthesis and Description of Compounds   Six compounds were prepared as shown in Figure 

2 and Schemes 1 - 3. There were two series, based on the two-subunit peptidomimetic 

compounds 3 (H2N-[Trp]-Trp-OH) and 4 (H2N-[Phe4Cl]-Trp-OH), designated “monomers”.  

https://exchange.tu.edu/owa/redir.aspx?C=lG7bnBnBKUeDwtGJs4vvj4zMRUGgo9BI6ZdoStgl7Fpmg6rR83XYfizveQx2oZWlto18KQPbOq8.&URL=http%3a%2f%2fwww.eyesopen.com


  

17 

Dimers 7 and 8 had two peptidomimetic monomers connected by a 22.5Å succinate-PEG3-

succinate spacer (PEG3 = triethylene glycol), calculated to be sufficiently long to permit 

simultaneous binding into two hydrophobic pockets of the HR1 trimer.  A model of 7 produced 

 
Figure 2.  Structures of peptidomimetic inhibitors used in this study 

Scheme 1.  Synthesis of two-subunit monomers 3 and 4
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by docking into the HR1 trimer and energy 

minimization (see Materials and Methods) is shown 

in Figure 3.  The two monomers reach into two HP’s 

of the trimer with the PEG linker units in mostly all 

trans conformation.  Extended monomers 10 and 11 

were substituted at the aniline with a hydrophobic 

alkyl tail terminated by a Trp, with the goal of 

increasing interactions within the HR1 groove beyond 

the HP.  LC-MS and NMR figures of the final 

compounds are shown in Supplementary Data Figures 

S1 and S2. 

3.2 Anti-fusion activity improved with compound 

elaboration Activity of the two series of 

compounds was investigated in cell – cell fusion 

(CCF) assays using effector cells expressing CXCR4-tropic HXB2-Env, and in virus – cell 

fusion (VCF) assays using laboratory adapted strains Ba-L (CCR5-tropic) and IIIB (CXCR4-

Scheme 2.  Synthesis of dimers 7 and 8 from monomers 3 and 4 

 

 
 
Figure 3.  Model showing the ability of dimer 7 

to reach around the HR1 coiled coil with the 

terminal –NH-[Trp]-Trp-OH units interacting 
in two hydrophobic pockets.  The surface 

representation of the HR1 (pdb 3P7K) has 
been made partly transparent to reveal the 
docked aromatic rings of 7.  

 



  

19 

tropic).  The results are shown in Figure 4 and Table 1.  CCF was inhibited more readily than 

VCF, and augmenting the basic monomer significantly improved anti-fusion activity.  None of 

the compounds exhibited any toxicity at the concentrations tested.   

Scheme 3.  Addition of a hydrophobic tail to monomers 3 and 4, forming 10 and 11

 

 
Figure 4.  Dose-response curves for each compound demonstrating percent inhibition of cell-cell 

fusion (A, B) and Ba-L viral infectivity (C, D) measured as relative luminescence units (RLU) using a 

luciferase reporter.  A, C.  Compounds 3 (blue), 7 (black), 10 (red); B, D. Compounds 4 (blue), 8 
(black) and 11 (red).  Cell viability is shown in corresponding open circles.  Error bars are standard 

deviations of three measurements. 
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Table 1.  Activity data against HIV-Env mediated fusion* 

 cell-cell fusion virus- cell fusion CC50 

 HXB2 Ba-L IIIB  

Compounds IC50 IC90 IC50 IC90 IC50 IC90  

3 22 80 > 50 > 50 > 50 > 50 > 50 

10 1.3 15.1 13.7 31.1 17.3 30.5 > 100 

7 0.6 6.3 3.6 >100 3.8 70.0 > 100 

4 24 49 > 50 > 50 > 50 > 50 > 50 

11 2.2 5.6 13.0 26.5 14.3 27.1 > 100 

8 0.4 4.4 4.7 18.3 5.1 20.8 > 100 

*3-6 repeats of each measurement, error is 10-20%, in µM 

Monomers H2N-[Trp]-Trp-OH and H2N-[Phe4Cl]-Trp-OH were weak CCF inhibitors (22 – 24 

µM) and were ineffective against VCF.  Activity improved to 1 -2 µM against CCF and 13 – 17 

µM against VCF with addition of the hydrophobic tail in compounds 10 and 11.  Many studies 

indicate that increased hydrophobic character is consistent with increased fusion inhibitory 

activity,
37

 including the preference for aromatic side chains at positions R
1
, R

2
 (and R

3
) of this 

peptidomimetic library (Figure 2).   The added hydrophobic tail with the terminal Trp may 

interact in the HR1 groove of the hydrophobic gp41 protein, or may associate with the lipid 

bilayer, orienting and concentrating the ligand in the biological milieu of the fusion reaction.   

Dimerization of the inhibitors with a 22Å PEG linker connecting two monomers resulted in the 

best performing member of each series, with compounds 7 and 8 having IC50’s < 1 µM against 

CCF and 3-5 µM against VCF.  In this case, it is not expected that the PEG linker would interact 

extensively with the membrane,
20

 suggesting that additional HR1 interactions could form the 

basis of the improved activity.  We noted that the antiviral activity of 7 reached a plateau at 

~20% residual fusion activity of Ba-L virus and ~6% residual fusion activity of IIIB virus.  The 

faster kinetics of Ba-L fusion may limit the potency of the largest molecular weight inhibitor 7. 
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3.3 Solution binding studies confirmed hydrophobic pocket binding  Next we wished to 

ascertain whether the 50-fold increase in potency was a cooperative effect of dimers binding into 

two HP’s of one HR1 trimer, as designed.  We therefore examined whether binding and kinetic 

data could discriminate between a monovalent and bivalent binding mechanism.  Affinity of the 

compounds for the gp41 HP was determined by fluorescence using a competitive inhibition 

assay that has been previously described.
14, 25

 Briefly, the hydrophobic pocket (receptor R) is 

formed by metal ion assisted association between three HR1 peptides env2.0 spanning the pocket 

sequence (HXB2 residues 560 – 584) that are covalently linked to N-terminal 2,2’-bipyridine 

(bpy).  Ferrous ion binding in 1/3 stoichiometry to peptide results in spontaneous formation of an 

HR1 trimeric coiled coil as a magenta-colored complex Fe(env2.0)3.  The fluorescence of HR2 

probe peptide (HXB2 residues 626-642) labeled with fluorescein at the C-terminus (L = C18-

e2.0FL) is quenched upon binding to Fe(env2.0)3, forming the basis of the fluorescence assay.  

Compounds binding to the HP displace the probe peptide with a concomitant increase in 

fluorescence.  Inhibition constants (KI) are determined by dose response measurements.  Data 

were fit to the equation 

 



Fobs  FRL  (FL FRL)
KD

KD  [R]
     (3)   

where KD is the dissociation constant of the Fe(env2.0)3-C18-e2.0FL complex, and FL and FRL 

are the fluorescence of free and bound C18-e2.0FL. Known parameters are KD = 0.8 µM and 

fractional FRL = 0.072.
14

   

For 1:1 binding of ligand with HP’s on the trimer Fe(env2.0)3, the concentration of free HP, [R], 

was calculated analytically according to the equation 

  



[R] {Rt  It KI  (Rt  It KI )4RtKI}/2   (4)  
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Rt, It and Lt are the total concentrations of added receptor binding sites, inhibitor and probe 

peptide respectively, and KI is the inhibition constant.  Equation (4) is an analytical 

approximation valid when Rt >> Lt which is fulfilled by the experimental conditions.  Equation 

(3) was also solved numerically for both 1:1 and 1:2 binding models, requiring no 

approximations (Materials and Methods).  The analytical approximation of 1:2 binding of ligand 

to two HP’s required solution of a cubic equation and was not used. 

3.3.1 Avidity for the HP did not predict the order of observed biological activity      In 

previous studies, we have shown a correlation between low µM binding to Fe(env2.0)3 and 

inhibition of HIV-fusion.
5, 6, 23

 Competitive inhibition dose response curves for 3, 4, 7, 8, 10 and 

 
Figure 5.  Fluorescence competitive inhibition dose response curves performed with 7.2 µM binding 
sites.  A. 3 (blue), 7 (black), 10 (red) and B. 4 (blue), 8 (black), 11 (red).  C and D show data fitting for 

dimers 7 and 8 to a 1:1 binding model (dashed line) and 1:2 binding model (bold solid line) assuming 

7.2µM binding sites.  The narrow solid lines show an alternative fit to a 1:1 binding model with 40% 
reduced receptor concentration. RFU = relative fluorescence units, as a fraction of the fluorescence of 

probe plus compound in the absence of receptor (FL). 
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11, conducted using 7.2 µM Rt and 30 nM Lt, are shown in Figure 5A and 5B.  Here too, we 

observed that low µM inhibition in the binding assay was commensurate with activity against 

HIV-Env mediated fusion; however it was not completely correlated. A higher concentration was 

required for 50% activity of dimer compared to the corresponding extended monomer in the 

fluorescence assay, while dimers were clearly more potent in biological assays.  Additionally, the 

slope of the binding curves was lower for the bivalent inhibitors.  Parameters FL, Rt and KI were 

determined from dose response curves by fitting to equations 1 and 2, and / or by numerical 

simulation.  Results are given in Table 2. 

Table 2. Results of fluorescence equilibrium binding assay for the 

hydrophobic pocket † 

Compound Binding 

model
‡
       

FL Rt 

(µM) 

Inhibition 

constant (µM) 

SSQ / 

10
-3

 

3 (monomer) 1:1 1.08 7.2 KI = 7.2 ± 1.1 2.13 

10 (extended monomer) 1:1 0.85 6.2 KI = 1.2 ± 0.2 2.07 

7 (dimer) 1:1 0.79 7.2 KI = 1.0 ± 0.3 
§
 10.11 

 1:1 0.80 4.3 KI = 2.3 ± 0.3 0.014 

 1:2 0.95 7.2 KI1 = 20, KI2 = 0.2 0.928 

4 (monomer) 1:1 1.00 7.2 KI = 15 ±
 
2.6 0.258 

11 (extended monomer) 1:1 0.85 5.5 KI = 3.4 ± 0.18 0.066 

8 (dimer) 1:1 0.99 7.2 KI = 5.3 ± 1.5 
§
 18.7 

 1:1 0.90 4.5 KI = 8.5 ±1.3 0.596 

 1:2 1.05 7.2 KI1 = 21, KI2 = 1.3 0.168 

† Data were fit to equations (3) and (4) or (1), and the sum of squares SSQ was 

calculated using equation (2), see text. 
‡
 The binding model is defined as the ratio 

of ligand : HP. 
§
Poor fit.  The total HP concentration in the assay, Rt, was 7.2 µM.  

Maximum fractional fluorescence FL < 1 could be due to light scattering 

 

3.3.2 Monomers and extended monomers could be fit to a 1:1 binding model   Fluorescence 

data for monomers 3 and 4 were simulated by a 1 ligand  : 1 HP binding model, with the 

expected concentration of HP, Rt = 7.2 µM.  Fits to the data for extended monomers 10 and 11 

yielded Rt values that were 14-20% lower than those of the corresponding monomer, which we 

interpreted as an outcome of the low solubility of these hydrophobic inhibitors, causing 
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aggregation of the receptor – compound complex.   Consequently, the aggregates caused light 

scattering in the fluorescence assay, leading to values for FL < 1 (Table 2). [Trp]-Trp containing 

peptidomimetic compounds 3 and 10 were measurably more potent than [Phe4Cl]-Trp 

compounds 4 and 11, consistent with their higher hydrophobic character.  Observed inhibition 

constants were 7 µM for 3, 15 µM for 4.  Adding the hydrophobic tail improved HP binding 

affinity by a factor of 5 to 6, to 1.2 for 10 and 3.1 for 11, mirroring the results obtained in fusion 

inhibition studies and further consolidating the role that hydrophobic character and HP binding 

play in compound activity. 

3.3.3 The data are compatible with a bivalent interaction of dimers with Fe(env2.0)3 Using 

the experimental value of Rt = 7.2 µM, fluorescence data for the bivalent inhibitors 7 and 8 could 

not be fit to a 1:1 binding model.  Instead, data fitting supported a model in which simultaneous 

binding of one bivalent ligand into two hydrophobic pockets occurred (Table 2, Figure 5C, D, 

Figure 6).  Since there are three HP’s per trimer, the simplest model for full occupancy of the 

HP’s would include a bidentate bound dimer and a monodentate bound dimer (Figure 6).  This 

leaves only 67% of receptor binding sites available for the total number of dimer molecules.  An 

excellent fit to the data was in fact achieved using a 1:1 binding model with ~40% reduction in 

Rt.  These fits yielded KI’s of 2.3 µM and 8.5 µM for 7 and 8, respectively, 2 – 3 fold improved 

over the respective monomers. The observed KI’s are assumed to be an average over 

monodentate and bidentate binding.  Best fit Rt values at ~60% implicate some aggregation as 

part of this model fitting, supported by the observation of FL values < 1. 

The data could also be fit with the full complement of Rt= = 7.2 µM using a model of 1:2 

binding of one bivalent ligand : 2 HP’s.  Notably the binding constant for the first interaction, KI  

= 20 to 21 µM, was higher than the KI for the monomers 3 or 4, and likely reflects an entropic 
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penalty due to the flexible PEG linker, while KI2 for the second interaction at the other end of the 

PEG linker was more than an order of magnitude lower than for the monomers, implying a 

cooperative binding effect or a local concentrating effect due to the first interaction. There was 

no evidence of aggregation from the FL values. The mathematical modeling does not specify 

whether the HP’s are on the same or different trimers, since they are each considered 

independent and identical.  It is unlikely that a ligand with the limited potency of 7 or 8 could 

bridge two trimers in solution.  Since the data fitting required every available HP, it is likely that 

a second bivalent inhibitor in the third site of each trimer engages in an equilibrium exchange for 

bidentate binding with the first bivalent inhibitor, as illustrated in Figure 6.   Data resolution does 

not permit us to distinguish this dynamic model from the static scenario described above. 

A third option for data fitting involves monodentate binding for all of the dimers, with a 

significant degree of receptor aggregation occurring during the assay.  We cannot formally rule 

out this possibility, given that the inhibitors are quite hydrophobic.  We therefore turned to 

surface binding studies to evaluate inhibitor interactions.   

3.4 Surface binding studies yielded kinetics of binding    Hydrophobic pocket binding was 

evaluated using surface plasmon resonance (SPR) to measure association and dissociation 

kinetics.  Analysis of the fluorescence data and previous literature observations
12

 suggested that 

bivalent binding should display an altered kinetic profile compared to 1:1 binding, permitting us 

 
Figure 6.  A model of bidentate binding of dimers to the HR1 trimer.  The HP’s, shown in 

orange, are arranged on a three-fold axis of symmetry. Each green diamond shape 
represents an aromatic side chain of the 2-subunit peptidomimetic monomer.  Two 

equivalent dimers are depicted in green and light green. 
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to verify our interpretation of the solution equilibrium binding studies.  Furthermore, we were 

curious to know whether kinetics, especially off-rate could be correlated more effectively to 

observed biological potency than KI, given that the target is a transient intermediate structure.  

Previous studies have shown that on-rate can limit the effectiveness of a large protein inhibitor,
38

 

and high potency is accompanied by a slow off-rate.
21, 39

 

SPR experiments were conducted on a Biacore CM5 chip using a modified version of the 

receptor peptide Fe(envC)3.  The peptide envC is terminated by a D-cysteine residue, which 

orients the thiol group along the axis of the peptide and permits vertical anchoring of the receptor 

to the surface groups.  We have previously used this receptor in electrochemical and SPR 

binding studies of peptide and small molecule – gp41 HP interactions.
40

 The design creates a 

homogeneous ligand surface with open binding sites on the three faces of the three-fold 

symmetrical receptor, such that dimers could simultaneously bind into two pockets, if that is 

indeed their mechanism.  

We achieved immobilization responses in the range 2460 – 5670 units, corresponding to 

approximately one Fe(envC)3 molecule per 32.6 – 8.3 nm
2
, respectively, or effective 

concentrations between 2.6 – 6 mM.
41, 42

 A reference channel was prepared without receptor, and 

signals from this channel were subtracted out to yield SPR sensorgrams that reflected 

interactions with Fe(envC)3.  Specificity of analyte binding was confirmed by observing both 

analyte and Fe(envC)3 concentration dependent responses (Supplementary Data, Figure S3).  

Typically, below ~10 µM, analyte responses were well below 100 RU, suitable for kinetic 

analysis.  At higher concentrations, most compounds gave disproportionately high analyte 

responses, likely due to non-specific binding or aggregation.  These sensorgrams were not 

included in the analysis.  
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 We measured the association rate (ka), dissociation rate (kd) and rate constant (KD = kd/ka) 

for each compound at various concentrations, by analyzing sensorgrams using Langmuir 1:1 

binding and 1:2 binding kinetic analysis.  The maximum analyte response, RUmax, occurring at 

saturating concentrations of analyte, was not obtained experimentally due to non-specific 

aggregation, and was determined from a good fit to SPR data for compound 7.  Remaining 

sensorgrams were fit by fixing RUmax proportionately according to the molecular weight of the 

analyte.  Uncertainty in RUmax led to ~30% uncertainty in ka, but still allowed us to compare 

kinetics within the compound set.  Off-rate kd was less dependent on RUmax.  The results are 

reported in Table 3, shown for the [Phe4Cl]-Trp series in Figures 7 and for the [Trp]-Trp series 

in Supplementary Data Figure S4.  The data clearly reveal significantly slower kinetics for 

bivalent compounds 7 and 8 compared to monovalent compounds 3 and 4, with intermediate 

rates observed for the extended monomers 10 and 11.  Monomers 3 and 4 had fast on- and off-

rates, on the order of ka ~ 6 *10
4
 M

-1
s

-1
 and kd ~ 0.8 s

-1
.  Both on-rate and off-rate for dimers 

were an order of magnitude slower, with ka ~3000 M
-1

s
-1

, and kd ~ 0.05 s
-1

.  The slow on-rate is 

likely due to the increased size and flexibility of the dimers, while the slow off-rate is consistent 

with dual binding interactions with Fe(envC)3 where there is a higher probability of rebinding 

before the partner can dissociate.  The extended monomers 10 and 11 have a large hydrophobic 

Table 3.  Results of SPR 1:1 binding kinetic analysis (Biacore)  

 ka (M
-1

s
-1

) kd / (s
-1

) kd/ka (M) RUmax* 
2
 (RU

2
) 

3 (monomer) 5.10e4 0.834 1.6e-5 59 4.54 

10 (ext. monomer) 1.10e4 0.093 1.4e-5 95 5.58 

7  (dimer) 0.37e4 0.060 1.6e-5 160 2.62 

4 (monomer) 6.70e4 0.820 1.2e-5 56 5.45 

11 (ext. monomer) 1.37e4 0.186 1.4e-5 93 2.90 

8 (dimer) 0.18e4 0.037 2.1e-5 157 1.68 

* RUmax was fixed during global curve fitting of sensorgrams at 3, 4 or 5 

concentrations for monomers, extended monomers or dimers, respectively 
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binding capacity and a flexible hydrophobic tail, which translated into intermediate values for ka 

and kd compared to the monomers and dimers, as well as lower KI’s observed by fluorescence. 

Changes of the same order of magnitude in both ka and kd resulted in little discrimination in KD  

over the dataset.  Values for KD obtained by the SPR experiment are of limited accuracy due to 

low precision in ka and the inability to reach saturating concentrations of analyte. 

3.4.1 A bivalent model gave an improved fit to the SPR data for the dimers We observed 

improved fits to the data for the dimers using a bivalent analyte binding model provided by the 

Biacore software, (Figure 7D and S4D).   The results of the data fitting are shown in Table 4.   

 
Figure 7.  SPR sensorgrams obtained with immobilized Fe(envC)3. The chip was exposed to 

compounds for 60s, followed by 300s dissociation time.  Data were collected from -50 to 360 s 
and are shown expanded in the figure between -10 to 150 s.  A. Compound 4, at concentrations 

6.25, 3.13, 1.56 µM; B.  Compound 11, at concentrations 6.25, 3.13, 1.56, 0.78 µM; C, D. 

Compound 8, at concentrations 6.25, 3.13, 1.56, 0.78, 0.39 µM.  Data were fit to a 1:1 binding 
kinetic model (A – C) or assuming bivalent analyte (D).  Residuals between observed and 

calculated data are shown below each sensorgram. 
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The observation that kd1 > kd2 suggested that bivalent interactions make an important 

contribution to slowing the off-rate, and therefore to potency against fusion. 

 

3.4.2 Kinetic rates correlated with inhibitor potency The relatively small change in KI 

between monomers and dimers can be explained by the high entropic penalty due to constraining 

the flexible structures.  7 and 8 have 35 and 33 rotatable bonds, respectively, 19 of which involve 

the flexible succinimidyl-PEG3 linker.
43

 For the extended monomers, observed KI were lower 

and ka’s higher than for the dimers, confirming that the additional hydrophobic contribution to 

enthalpy more than offset the entropic penalty due the 18 – 19 added rotatable bonds.  The 

biophysical properties of the dimers provided evidence that slow kinetics was a more important 

quality for inhibiting fusion than the KI, since 7 and 8 were more than an order of magnitude 

more potent as fusion inhibitors than 3 and 4, and several times more potent than 10 and 11.  

Table 4.  Biacore fitting of dimer data to a bivalent binding model 

 ka1 (M-1s-1) kd1 (s
-1

) KD1(M) ka2 (RU
-1

s
-1

) kd2 (s
-1

) RUmax 

(RU) 


2
 (RU

2
) 

7 2691 0.0869 3.2e-5 4.54e-5 0.0145 160 2.95 

8 1489 0.0638 4.3e-5 2.27e-5 0.0033 157 0.44 

 
Figure 8. Correlations between kinetic data and fusion inhibition. A. Dissociation rate kd and B. 

Inhibition constant KI plotted against cell- cell fusion IC50.   Data were obtained from Tables 1 – 3. 
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They also explain the lower correlation observed between fusion inhibition and KI compared to 

kd, as shown in Figure 8.  We note that ka also correlated with inhibitor potency (not shown).  

 

4. Discussion 

In this study, we evaluated the binding affinity, kinetics and biological activity of 

peptidomimetic inhibitors that were modified to extend interactions with gp41 beyond the HP.  

The core units were arylalkoxy-amino acid helical mimetics supporting side chains at the 

equivalent of i and i+3 positions of a helix.  These were 3 (H2N-[Trp]-Trp-OH) and 4 (H2N- 

[Phe4Cl]-Trp-OH).  Previous studies have identified these molecules as moderate hydrophobic 

pocket binders and fusion inhibitors.
23, 24

 Onto these monomeric units, we grafted a largely 

flexible hydrophobic tail that could extend the interaction of the inhibitor into the long 

hydrophobic groove (compounds 10 and 11).  Alternative structures were created with a flexible 

PEG linker supporting two monomeric units at either end, which could purportedly interact 

simultaneously with hydrophobic pockets on two faces of the coiled coil.  These were 

compounds 7 (dimer of –HN-[Trp]-Trp-OH) and 8 (dimer of –HN-[Phe4Cl]-Trp-OH).   Fusion 

inhibition studies revealed that monomers were poor to moderate inhibitors, monomers extended 

with a hydrophobic tail were more potent, and the bivalent compounds with a monomer unit at 

each end of the long 22.5 Å spacer were the most potent fusion inhibitors.  KI’s were obtained by 

equilibrium binding studies using fluorescence, and kinetic data were obtained by SPR.  Data for 

3, 4, 10, and 11 conformed to a 1:1 binding model, while data for the dimers 7 and 8 were 

commensurate with bidentate binding.  Optimal fits of the dimer data were obtained with a 1:2 

ligand : HP binding model (Figures 5 and 7), yielding two inhibition constants KI1 and KI2 for the 

first and second binding event, or by proportionate reduction in binding site concentration in a 

1:1 model in which a maximum of two dimer molecules associate with each HR1 trimer, 
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yielding a single average <KI>.  Significantly reduced dissociation constants were obtained 

compared to monomers, presumably due to rebinding events.  The data could be interpreted as 

monodentate binding of dimer molecules, although this required the assumptions that 40% of the 

receptor aggregated during the binding assay, and that slow dissociation was simply a 

consequence of the large number of degrees of freedom in the dimers.
44

  

The variation of KI’s across the data set was lower than the differences in their biological 

activity. The 6-fold reduction in KI caused by adding a flexible hydrophobic tail in 10 and 11 

improved biological activity by a factor of 10 - 15, while dimers 7 and 8 were 40 – 60 fold more 

active than the monomers against fusion, despite only 2 -3 fold changes to <KI>.  Examination of 

the kinetic data revealed that dissociation rate kd was better correlated to biological activity than 

KI.  Dimers dissociated ~ 20 times more slowly than monomers.  

ka also decreased with increasing size of the inhibitors, a consequence of both size and 

the loss of conformational entropy upon binding.
44

 Consequently, the range of KI = kd/ka 

remained small.  This is the enthalpy – entropy compensation effect, whereby structural mobility 

provided for enthalpic contributions through enhanced conformational search space and number 

of interactions, but simultaneously resulted in a large entropic penalty from inhibitor 

rigidification upon binding.
43

 In this context, even the monomeric units with 8 - 9 rotatable 

bonds have poor avidity.  The number of rotatable bonds increased to 18-19 for 11 and 10, and 

33 – 35 for 8 and 7, clearly a limiting factor in the potency of the resulting molecules.  It also 

affected the degree of cooperativity of bidentate binding in the dimers.  Slight cooperativity was 

apparent from the lower average inhibition constant of dimers compared to monomers and the 

observation of KI2 << KI1, and kd2 < kd1 in bivalent model fitting, but it was significantly 
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dampened by the length and flexibility of the spacer between the two monomers, resulting in a 

large KI1 and low ka1.  

By contrast, there was significant cooperativity observed in fusion inhibitory activity of 

the dimers, suggesting that the biological milieu is not emulated by the biophysical setup.  A 

factor of 2 – 3 in <KI> became a factor of 40 – 60 in IC50.  One possible explanation is that the 

transient nature of the biological target accentuates the role of inhibitor kinetics in potency.  

Previous studies have shown that potency of HP binding inhibitors is highly dependent on the 

rate of the fusion reaction.
21

 The low off-rate for the dimers could result in gp41 molecules 

trapped in the inhibitor-bound state or cause an off-pathway effect.
39

 Another possibility is that 

the local environment of gp41 near the membrane alters the behavior of the inhibitors due to 

association of hydrophobic moieties with lipids.  Addition of a lipid-binding moiety to a peptide 

is known to enhance peptide potency by orienting and concentrating the peptide at the site of 

action.
45-47

 Yet a third possible explanation is that the cooperativity does not arise from bidentate 

interactions with one HR1 trimer, but rather by the bridging of two trimers on the cell or virion 

surface. This was suggested to be the mechanism of 20 – 100 fold increased potency of bivalent 

sialosides against Influenza Virus mediated hemagglutination, where, similar to our 

observations, a minimal increase in binding affinity to an isolated trimer occurred for the 

dimers.
48

 This mechanism appears somewhat less likely due to the low receptor density on the 

surface of HIV, where there are estimated to be ~ 14 Env trimers per virion, compared to ordered 

arrays of 500 – 1000 HA trimers per Influenza virion.
48, 49

 However, if more than one HIV Env 

trimer congregates to form the fusion pore, it could provide a window of susceptibility for a 

dimer bridge.  The number is not known and has been variously thought to be one or a few.
50
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5. Conclusion 

In conclusion, we have observed ~ 50 fold improvement in fusion inhibitory activity 

upon dimerization of small peptidomimetic two-subunit compounds containing Trp and Phe4Cl 

residues.    Off-rate was found to be a more sensitive predictor of fusion inhibitory activity than 

KI.  Our data are consistent with bidentate binding of the dimer molecules to the gp41 trimer, 

with slow dissociation rates due to rebinding events, notwithstanding the low cooperativity of 

dimer binding.  The failure of solution binding to recapitulate the cooperative effect observed in 

fusion inhibition is likely due to linker flexibility and to the effect of kinetics on the inhibitory 

potency of the dimers.  By way of comparison, a range of 10 - 300 fold improvement in fusion 

inhibitory activity was found by dimerizing D-peptide inhibitors, a variation that was related to 

the viral strain-dependent rate of fusion.
20, 21

 Trimerization of D-peptides improved activity by a 

factor of 1000 or more.
20, 21

 The mechanism was assumed to be due to tridentate binding to one 

HR1 trimer, but no specific experiments confirmed this binding mechanism.  We have shown 

that multimerization is an applicable strategy for improving non-peptide fusion inhibitors.  Local 

modifications to the structures to improve their thermodynamic parameters, as well as globally 

increasing multivalency, could yield orders of magnitude increase in potency.  Importantly, these 

inhibitors utilize specific HP interactions rather than non-specific hydrophobic or electrostatic 

interactions
51

 which can yield low µM binding to gp41 HR1 but are difficult to optimize. In this 

regard, it is likely that non-specific hydrophobic interactions will limit our ability to optimize 

inhibitors such as 10 and 11.  Our results demonstrate proof of principle of a method to enhance 

avidity of non-peptide fusion inhibitors by focusing on multiple HP interactions. 
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Figure Captions 

Figure 1.  Experimental and model structures of the gp41 HR1 – HR2 domain and interactions.  

A.  Homology modeling of HIV-1 HXB2 ectodomain from the structure of the corresponding 

SIV domain (pdb 2EZO).  The HR1 trimer is shown as a space filling model in tan, and loop and 

HR2 residues are shown as a ribbon representation in yellow;  B.  Expansion of the hydrophobic 

pocket region from A.  C.  Crystal structure (pdb 2R5D) of D-peptide PIE7 showing Trp and Leu 

residues filling the pocket; D, E. Modeled low energy structures of two subunit and three subunit 

peptidomimetics with Trp and Leu residues filling the pocket.  See Figure 2 for the structures of 

the peptidomimetic inhibitors. 

Figure 2.  Structures of peptidomimetic inhibitors used in this study.  

Figure 3.  Model showing the ability of dimer 7 to reach around the HR1 coiled coil with the 

terminal –NH-[Trp]-Trp-OH units interacting in two hydrophobic pockets.  The surface 

representation of the HR1 (pdb 3P7K) has been made partly transparent to reveal the docked 

aromatic rings of 7. 

Figure 4.  Dose-response curves for each compound demonstrating percent inhibition of cell-cell 

fusion (A, B) and Ba-L viral infectivity (C, D) measured as relative luminescence units (RLU) 

using a luciferase reporter.  A, C.  Compounds 3 (blue), 7 (black), 10 (red); B, D. Compounds 4 

(blue), 8 (black) and 11 (red).  Cell viability is shown in corresponding open circles.  Error bars 

are standard deviations of three measurements.  

Figure 5.  Fluorescence competitive inhibition dose response curves performed with 7.2 µM 

binding sites.  A. 3 (blue), 7 (black), 10 (red) and B. 4 (blue), 8 (black), 11 (red).  C and D show 

data fitting for dimers 7 and 8 to a 1:1 binding model (dashed line) and 1:2 binding model (bold 

solid line) assuming 7.2 µM binding sites.  The narrow solid lines show an alternative fit to a 1:1 
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binding model with 40% reduced receptor concentration. RFU = relative fluorescence units, as a 

fraction of the fluorescence of probe plus compound in the absence of receptor (FL). 

Figure 6.  A model of bidentate binding of dimers to the HR1 trimer.  The HP’s, shown in 

orange, are arranged on a three-fold axis of symmetry. Each green diamond shape represents an 

aromatic side chain of the 2-subunit peptidomimetic monomer.  Two equivalent dimers are 

depicted in green and light green. 

Figure 7.  SPR sensorgrams obtained with immobilized Fe(envC)3. The chip was exposed to 

compounds for 60s, followed by 300s dissociation time.  Data were collected from -50 to 360 s 

and are shown expanded in the figure between -10 to 150 s.  A. Compound 4, at concentrations 

6.25, 3.13, 1.56 µM; B.  Compound 11, at concentrations 6.25, 3.13, 1.56, 0.78 µM; C, D. 

Compound 8, at concentrations 6.25, 3.13, 1.56, 0.78, 0.39 µM.  Data were fit to a 1:1 binding 

kinetic model (A – C) or assuming bivalent analyte (D).  Residuals between observed and 

calculated data are shown below each sensorgram. 

Figure 8. Correlations between kinetic data and fusion inhibition. A. Dissociation rate kd and B. 

Inhibition constant KI plotted against cell- cell fusion IC50.   Data were obtained from Tables 1 – 

3. 
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Graphical Abstract 
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Highlights 

 

 Bivalent gp41 inhibitors were 40 – 60 fold more potent than monomers. 

 Binding potency was not significantly improved by dimerization.  

 Potency was correlated to slower off-rates. 

 Data could be explained by a bidentate binding model for the dimers. 

 The kinetic dependence may be due to transience of the targeted intermediate. 
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