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Cellular/Molecular

Urotensin II Modulates Rapid Eye Movement Sleep through
Activation of Brainstem Cholinergic Neurons

Salvador Huitron-Resendiz,1* Morten P. Kristensen,4* Manuel Sánchez-Alavez,1 Stewart D. Clark,5 Stephen L. Grupke,4

Christopher Tyler,4 Chisa Suzuki,2 Hans-Peter Nothacker,3 Olivier Civelli,3 Jose R. Criado,1 Steven J. Henriksen,1

Christopher S. Leonard,4 and Luis de Lecea1,2

Departments of 1Neuropharmacology and 2Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, 3Department of Pharmacology,
University of California, Irvine, Irvine, California 92697, 4Department of Physiology, New York Medical College, Valhalla, New York 10595, and 5The Centre
for Addiction and Mental Health, Toronto, Ontario, Canada M6J 1H4

Urotensin II (UII) is a cyclic neuropeptide with strong vasoconstrictive activity in the peripheral vasculature. UII receptor mRNA is also
expressed in the CNS, in particular in cholinergic neurons located in the mesopontine tegmental area, including the pedunculopontine
tegmental (PPT) and lateral dorsal tegmental nuclei. This distribution suggests that the UII system is involved in functions regulated by
acetylcholine, such as the sleep–wake cycle. Here, we tested the hypothesis that UII influences cholinergic PPT neuron activity and alters
rapid eye movement (REM) sleep patterns in rats. Local administration of UII into the PPT nucleus increases REM sleep without inducing
changes in the cortical blood flow. Intracerebroventricular injection of UII enhances both REM sleep and wakefulness and reduces
slow-wave sleep 2. Intracerebroventricular, but not local, administration of UII increases cortical blood flow. Moreover, whole-cell
recordings from rat-brain slices show that UII selectively excites cholinergic PPT neurons via an inward current and membrane depo-
larization that were accompanied by membrane conductance decreases. This effect does not depend on action potential generation or fast
synaptic transmission because it persisted in the presence of TTX and antagonists of ionotropic glutamate, GABA, and glycine receptors.
Collectively, these results suggest that UII plays a role in the regulation of REM sleep independently of its cerebrovascular actions by
directly activating cholinergic brainstem neurons.

Key words: urotensin II; REM sleep; urotensin receptors; acetylcholine; pedunculopontine tegmental nucleus; laterodorsal tegmental
nucleus; cortical blood flow

Introduction
Urotensin II (UII) is a neuropeptide that was initially isolated from
urophysis extracts of several species of fish (Pearson et al., 1980),
with a core structure that is conserved through mollusks to mam-
mals (Conlon et al., 1996, 1997; Chartrel et al., 1998; Coulouarn et
al., 1998, 1999). UII has potent vasoconstrictor activity in the periph-
ery (Russell et al., 2001; Bohm and Pernow, 2002). However, intra-
cerebroventricular injection or intra-arterial injection of UII induces
hypotensive and bradycardiac effects in rats (Gibson et al., 1986),
suggesting that central UII plays a role in cardiovascular homeostasis
through its specific receptor in blood vessels and in the CNS (Ames
et al., 1999; Liu et al., 1999; Mori et al., 1999; Nothacker et al., 1999).
Recent studies have shown that UII receptor mRNA colocalizes with
choline acetyltransferase in the mesopontine tegmental area, includ-
ing the pedunculopontine tegmental (PPT) and the lateral dorsal
tegmental (LDT) nuclei (Clark et al., 2001).

The distribution of UII receptor mRNA in the cholinergic

PPT and LDT neurons suggests that, in addition to its vascular
actions, the UII system may be involved in the regulation of the
sleep–wake cycle. Previous studies in cats and rats have demon-
strated the role of PPT and LDT nuclei in sleep regulation. The
injection of cholinergic agonists into the medial pontine reticular
formation, a target region of the PPT and LDT, induces a rapid
eye movement (REM)-like state (George et al., 1964; Baghdoyan
et al., 1984; Quattrochi et al., 1989; Bourgin et al., 1995) including
cortical desynchronization, hippocampal theta rhythm, muscle
atonia, reduction of REM sleep onset, and increase in total time of
REM sleep (Vanni-Mercier et al., 1989; Yamamoto et al., 1990;
Vertes et al., 1993). These and other studies (for review, see Ste-
riade and McCarley, 1990) clearly indicate that cholinergic neu-
rons in the PPT are important regulators of REM sleep.

Considering these studies and the observation that cholinergic
PPT and LDT neurons express UII receptor mRNA, we tested the
hypothesis that UII can significantly influence cholinergic PPT and
LDT neuron activity and alter REM sleep patterns in rats. In addi-
tion, because UII induces changes in blood pressure (Gibson et al.,
1986), and because it has been proposed that the hypnogenic prop-
erties of some putative sleep factors could be related to changes in
blood pressure (Feinberg and Campbell, 1999), we also measured
cortical blood flow (CBF) in animals treated with UII.

Our results show that both local injection of UII (0.6 pmol) into
the PPT nucleus and intracerebroventricular administration of UII
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(0.6 nmol) dramatically increase the
amount of REM sleep in rats. Relative cere-
bral blood flow was unaffected when UII
was administered into the PPT nucleus. Fur-
thermore, using whole-cell recordings, we
demonstrate that UII selectively excites me-
sopontine cholinergic PPT neurons by acti-
vating a slow inward current. Collectively,
our data strongly suggest that UII can func-
tion to modulate REM sleep by enhancing
the excitability of mesopontine cholinergic
neurons, independent of its effects on the
cerebral vasculature.

Materials and Methods
Animals and surgery. Thirty-two adult male
Sprague Dawley rats (250 –300 g) were im-
planted under halothane anesthesia (1–2%),
with a standard set of stainless-steel screw elec-
trodes for chronic sleep recordings. The elec-
troencephalogram (EEG) was recorded from
electrodes placed on the frontal (two elec-
trodes) and parietal (two electrodes) bone over
the hippocampus [anteroposterior (AP),
�2.46; mediolateral (ML), �2.0]. A fifth EEG
electrode was placed over the cerebellum to
ground the animal and to reduce signal arti-
facts. Two wire electrodes were inserted in the
neck musculature to record postural tone
through electromyographic (EMG) activity.
Insulated leads from the EEG and EMG elec-
trodes were then soldered to a miniconnector
that was cemented to the skull with dental
acrylic. In addition to the EEG and EMG elec-
trodes, a chronic guide stainless-steel cannula
was implanted aseptically into the right lateral
ventricle of 10 rats. The guide cannula was
placed according to the stereotaxic coordinates
of the atlas of Paxinos and Watson (1986) [AP,
�0.34; ML, �1.4; dorsoventral (DV), �2.8]. A
second group of rats (n � 10) was implanted
bilaterally in the pars dissipatus region of the
PPT nucleus (AP, �8.0, ML, �2.0; DV, �5.7)
(Paxinos and Watson, 1986). A third cohort of
rats (n � 8) was implanted bilaterally with
guide cannulas into the PPT pars compacta
(PPT-pc) region (AP, �8.3; ML, �2.0; DV,
�7.0), which has a dense population of cholin-
ergic neurons and is the region in which the
electrophysiological recordings were con-
ducted. To evaluate the specificity of effects of
UII on PPT cholinergic neurons, four rats were
implanted with a chronic guide stainless-steel
cannula into the right locus ceruleus (LC) (AP,
�12.35; ML, �1.1; DV, �7.45, using a poste-
rior angle of 20° from vertical).

After surgical implantation and appropriate wound closure, rats were
housed in individual Plexiglas recording cages placed in environmentally
controlled chambers (Tech/Serv model EPC-010; BRS/LVE, Laurel, MD).
The animals were allowed sufficient time to recover before the study. During
anesthetic recovery, animals were observed in a clean single cage, and their
normal righting capability and locomotion were monitored. The ambient
temperature was maintained at 25°C � 1, and a 12 h light/dark cycle was
maintained throughout the 10 d recovery period and the subsequent exper-
iment period. Food and water were available ad libitum.

Sleep recordings. Rats were housed in individual recording cages that
were maintained at the same temperature and light/dark cycle described

above. To record sleep–wake states, rats were connected to commutators
with flexible cables, allowing their unrestricted movement within the
cage, and they were habituated to the recording cages for 96 h. The EEG
and EMG signals were amplified in a Grass Instruments (Quincy, MA)
model 7D polygraph, filtered in a frequency range of 0.30 –75 Hz and
sampled at 256 Hz. The EEG and electromyogram were displayed on a
computer monitor and stored with a resolution of 128 Hz for off-line
scoring of sleep–wake states and spectral analysis, using software sup-
plied by Kissei Comtec (Irvine, CA). The EEG and electromyogram were
recorded over 6 h. The recording chambers contained a mini video cam-
era for continuously observing animal behavior during the recording
sessions.

Figure 1. Schematic representation of UII injection sites. A, Drawings of coronal sections at three different levels of the
brainstem (Swanson, 1992). The circles correspond to the positive sites (at least one site is located in the PPT) for which significant
changes in REM sleep were observed after bilateral infusion of the 0.6 pmol of UII. For each rat, the bilateral sites are represented
by a colored circle. The rats injected in the LC are represented by � and a triangle. The rats treated with UII and its antagonist are
represented by diamonds. Four animals received injections of biotinylated UII (numbered 1– 4), and the spread of biotinylated
peptide was analyzed 2 h after injection, using streptavidin peroxidase. All animals considered in the analysis had their injection
sites verified anatomically. PRN, Pontine reticular nucleus; DR, dorsal raphe; AQ, aqueduct; V4, fourth ventricle; IC, inferior collicu-
lus. B, Micrograph of one of the injection sites in the PPT. The asterisk marks the tip of the injector, next to cholinergic neurons in
the PPT nucleus stained for NADPH diaphorase. Scale bar, 75 �m
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Experimental protocol. Six days after surgery, the patency and free
drainage of the guide cannula were assessed in animals intracerebroven-
tricularly implanted by microinjection of 5.0 �l of pyrogen-free isotonic
saline (PFS; Abbott Laboratories, North Chicago, IL) over a 5 min period.
The patency for cannulas implanted into the PPT nucleus was assessed by
microinjection of 0.5 �l of PFS over a 10 min period. Procedures for
minimizing potential contamination by extraneous pyrogens were used
for all drug solutions and vehicles.

The sleep recordings on rats implanted with an intracerebroventricu-
lar cannula began 5 h after the onset of the light period [circadian time
(CT) 5; CT0, lights on] observing the following schedule: on day 1, rats
were injected intracerebroventricularly with 5.0 �l of PFS vehicle at CT5,
and recordings were continued for 6 h; on day 3, the same rats were
challenged at CT5 with 0.6 nmol of UII in 5.0 �l of vehicle. Injections
were made over a 5 min period. UII was obtained from Bachem (Tor-
rance, CA).

The cohort of rats implanted with cannulas in the PPT nucleus pars
dissipatus and four rats implanted with cannulas into the PPT-pc were
recorded according to the following schedule: on the first day, rats re-
ceived a bilateral injection of 0.5 �l of PFS vehicle into the PPT nucleus at
CT5, and recordings were continued for 6 h; on the third and fifth days,
rats were injected bilaterally at CT5 into the PPT nucleus with 0.6 and 6.0
pmol, respectively, of UII in 0.5 �l of vehicle.

The other four rats implanted with cannulas into the PPT-pc received,
on day 1, a bilateral injection of 0.3 �l of PFS. On day 3, 3 ng of Cpa-D-
Cys-Pal-D-Trp-Lys-Val-Cys-Cpa-NH2 (SB-710411), a UII receptor an-
tagonist (Behm et al., 2002, 2004), was injected and followed 30 min later
by a 0.6 pmol injection of UII. On day 5, animals were treated with 3 ng
of SB-710411.

For both intracerebroventricular and microinjection experiments, UII
treatments were done at CT5, and 6 h recordings were obtained. We
skipped 1 d between treatments to ensure that the effects of the previous
treatment had disappeared. All microinjections were made over a 10 min
period.

To determine the spread of intracellular injections, four animals were
injected with 0.2 �l of biotinylated UII (Phoenix Pharmaceuticals, Bel-
mont, CA) into the PPT. The rats were killed 2 h after injection under
deep anesthesia with 5% halothane by intracardial perfusion with 4%
paraformaldehyde in phosphate buffer. The brain was removed, sliced,
and stained for NADPH diaphorase to visualize the PPT nucleus. The
injected peptide was visualized with ABC peroxidase and DAB/H2O2. In
all instances, the biotinylated peptide could be detected in the PPT area
(see Fig. 1).

Rats implanted for LC injections received, on day 1, a microinjection
of PFS, whereas on day 3 they were challenged with 6.0 pmol of UII.
Injection time and recording conditions were the same as those for other
groups.

Infusion sites were verified histologically in 25 �m frontal-brain sec-
tions stained with cresyl violet and methylene blue. A set of sections was
stained for NADPH diaphorase, which stains cholinergic neurons in the
LDT/PPT (Vincent and Kimura, 1992), to verify that the injection site
was in close proximity to the PPT.

Sleep and EEG data analysis. The polygraphic data were classified in
15 s epochs as the following states of vigilance: wakefulness (W), slow-
wave sleep 1 (SWS1), SWS2, and REM sleep, as described previously
(Lerner et al., 1994; Cravatt et al., 1995). Percentage of total time spent in
W, SWS1, SWS2, and REM sleep per hour was calculated. The latency to
the onset of the first SWS2 and REM sleep episodes and the frequency
and duration of the individual SWSs and REM sleep episodes were also
calculated. In addition to standard sleep analysis, EEG spectral analyses
in the different sleep–wake stages were performed by Fourier fast trans-
formation analysis using 4 s epochs, giving 1.0 Hz bins from 0 to 30 Hz.
Each bin was named after its lower limit. The spectral power was divided
into wave bands corresponding to � (0.5– 4.0 Hz), � (4.5–12.0 Hz), �
(15.0 –20.0 Hz), and � (30.0 – 60.0 Hz), averaged over the epoch and
divided by bandwidth to give power density for each band. Epochs with
artifacts in the polygraph records were discarded. In W, SWS1, SWS2,
and REM sleep, only scoring epochs that were both preceded and fol-
lowed by the same stage were included in the analysis. Because the abso-

lute power is quite variable from rat to rat, we normalized the data
according to Mendelson and Bergmann (1999) and then compared the
mean power in �, �, �, and � bands between groups through a repeated-
measures ANOVA, with Scheffé’s F test used for post hoc comparisons. In
addition, unpaired, bidirectional t tests were applied to assess the signif-
icance of mean EEG power differences in the intracerebroventricular
study.

Cortical blood flow
Surgical preparation. Ten rats were anesthetized with halothane (3– 4%),
tracheotomized, and placed into a stereotaxic apparatus. Body tempera-
ture was monitored and maintained at 37 � 0.1°C by a feedback-
regulated heating pad. Halothane levels were reduced to 1% after surgery
for the rest of the recording period (typically 4 –5 h). The skull was
exposed, and screws were implanted to record the EEG as described
previously. A small craniotomy (2 � 2 mm) was performed to expose the
cortex, the dura was removed, and the site was superfused with normal
saline solution (37°C), pH 7.3–7.4). CBF was monitored continuously at
the site of superfusion with a laser-Doppler (LD) probe (0.8 mm tip
diameter; Vasamedic, St. Paul, MN) positioned stereotaxically on the
parietal cortical surface (stereotaxic coordinates: 4.2 mm posterior, 2.0
mm lateral relative to bregma, and 0.5 mm ventral to dura). For intrace-
rebroventricular injections, a stainless-steel guide cannula was implanted
aseptically into the right lateral ventricle (AP, �0.34; ML, �1.4; DV,
�2.8), whereas for PPT injections stainless-steel guide cannulas were
implanted bilaterally into the PPT nucleus (stereotaxic coordinates: AP,
�8.0; ML, �2.0; DV, �5.7).

Experimental protocol. All experiments started at CT5, observing the
following schedule: CBF was measured for 25 min before and 185 min
after administration of UII in all animals. UII was administered intrac-
erebroventricularly (n � 5) at a 0.6 nmol dose (5 �l volume) and directly
into the PPT nucleus (n � 5) at a 0.6 pmol dose (0.5 �l volume).

Monitoring CBF and data analysis. CBF values were observed every 5
min and expressed as a percentage increase relative to the resting baseline
level. LD flowmetry monitors relative changes in cerebral blood flow
(Dirnagl et al., 1989; Iadecola and Reis, 1990). To minimize confounding
effects of anesthesia, the time interval between administration of halo-
thane and testing of hippocampal blood flow was kept consistent. Data
were compared by a repeated-measures ANOVA, followed by a Scheffé v́s
F test for specific comparisons when indicated.

In vitro studies
Slice and whole-cell recordings. Brain slices were prepared and whole-cell
recordings were conducted as described previously in detail (Burlet et al.,
2002). Briefly, 250 �m slices containing the PPT were prepared from
isofluorane-anesthetized Sprague Dawley rats (postnatal days 12–20;
Charles River Laboratories, Wilmington, MA) in ice-cold, carbogen-
equilibrated, artificial CSF (ACSF), which contained the following (in
mM): 121 NaCl, 5 KCl, 1.2 NaH2PO4, 2.7 CaCl2, 1.2 MgSO4, 26 NaHCO3,
and 20 dextrose. Using a fixed-stage microscope (model BX50WI; Olym-
pus, Tokyo, Japan), the boundaries of the PPT were first determined by
low-magnification inspection, and then neurons to be recorded were
visualized with a cooled CCD video camera (Dage 300T; Dage-MTI,
Michigan City, IN) using a 40� water-immersion objective and infrared
differential interference contrast (DIC) optics. The submerged slice re-
cording chamber was perfused at 3–5 ml/min with room-temperature
ACSF. In some experiments, 0.1% (by weight) BSA (Sigma, St. Louis,
MO) was included in the ACSF. Rat urotensin II (Phoenix Pharmaceu-
ticals) was dissolved in the perfusate (300 nM) just before the experiment
and was applied by bath superfusion. In selected bridge-mode recordings
aimed at evaluating presynaptic versus postsynaptic contributions to the
UII response, tetrodotoxin (0.5 �M), DNQX (15 �M), APV (50 �M),
bicuculline (10 �M), and strychnine (2.5 �M) were included in the super-
fusion media to block action potentials and fast synaptic potentials.

Giga-seal whole-cell voltage- and current-clamp recordings of PPT
neurons were made with pipettes pulled from 1.5-mm-diameter glass
capillary tubing (Corning 7052; A&M Systems, Everett, WA) using an
Axopatch 200B amplifier (Molecular Devices, Union City, CA). The pi-
pette solution contained the following (in mM): 140 K-gluconate, 4
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MgATP, 10 HEPES, 0.3 NaGTP, and 4 NaCl. Biocytin Alexa Fluor 594
(10 �M; Molecular Probes, Eugene, OR) was included in the patch solu-
tion for identification of recorded cells. Membrane voltages and currents
were controlled and recorded with a computer running pClamp8 soft-
ware (Molecular Devices). The quality of recordings was assessed by
on-line monitoring of access resistance (�31 M�), input resistance,
holding current, and capacitance, and recordings were terminated if the
estimated access resistance became unstable or changed by �20% be-
tween measurements. Recordings were uncompensated for series resis-
tance errors, because the recorded currents and associated voltage errors
were small. Electrophysiological signals were filtered at 2 kHz and sam-
pled at 5 kHz.

Immunocytochemistry. Cell identification was performed by immuno-
cytochemistry as described previously in detail for brain nitric oxide
synthase (bNOS) (Burlet et al., 2002), which is a convenient marker for
cholinergic neurons in the LDT and PPT (Vincent and Kimura, 1992).
Briefly, after successful removal of the patch pipette from the Alexa
Fluor-filled neuron, the slice was fixed in 4% paraformaldehyde for 1–3 d
at room temperature, cryoprotected by equilibration in 30% sucrose
(0.01 M PBS), and resectioned (40 �m) on a freezing microtome. Sections
were incubated in rabbit polyclonal anti-bNOS (1:400 in PBS containing
3% goat serum and 0.3% Triton X-100 at room temperature; Sigma) and
visualized with FITC-conjugated goat anti-rabbit and anti-mouse IgGs
(1:50 in PBS; Chemicon, Temecula, CA) to determine whether recorded
cells were bNOS-immunoreactive.

Peptides. Rat urotensin II was synthesized by The Scripps Research
Institute peptide core facility or purchased from Phoenix Pharmaceuti-
cals or Bachem. Peptide identity was confirmed by mass spectrometry.
The UII receptor antagonist SB-710411 (Behm et al., 2002) and biotin-
ylated UII were purchased from Phoenix Pharmaceuticals.

Results
Effects of local administration of UII into the PPT nucleus
Effects on the sleep–wake patterns and EEG spectra
We tested the effects on the sleep–wake cycle of local bilateral
injections of 0.6 and 6.0 pmol of UII into the PPT nucleus. To
locate the specific injection sites, we mapped them histologically
according to the atlas of Swanson (1992) (Fig. 1). Administration
of 0.6 pmol of UII induced a significant increase in REM sleep of
90.0, 59.0, and 69.8%, respectively, 2, 3, and 4 h after treatment,
(F(3,18) � 4.35, p � 0.01; F(3,18) � 4.00, p � 0.05; and F(3,18) �
6.19, p � 0.01, respectively), compared with PFS vehicle. This
increase was blocked by pretreatment with SB-710411, a UII re-
ceptor antagonist (Behm et al., 2002). The increase in REM sleep
was linked to a decrease in the amount of W during the third and
fourth hours after the injection of UII; however, such effects were
not significant (Fig. 2). The increase in REM sleep was attribut-
able to a significant increment of 45.3% (F(3,18) � 3.11; p � 0.05)
in the mean number of REM sleep episodes, whereas the UII
receptor antagonist blocked this effect (Table 1). Administration
of 0.6 pmol of UII into the PPT nucleus did not produce any
significant change in the amount of SWS1 and SWS2. Likewise,
no significant changes in any of the stages of vigilance or sleep
parameters were observed when animals were treated with 6.0
pmol of UII (Fig. 2). Similar results were observed in rats with
cannulas implanted into the PPT-pc, and no significant differ-
ences were observed between animals with cannulas implanted
into the PPT pars dissipatus and those with cannulas implanted
into the PPT-pc (data not shown).

UII administration (0.6 pmol) led to marked changes in the
EEG power density in some frequency bands compared with sa-
line and 6.0 pmol of UII. An increase in the power was observed
both in � (F(2,2900) � 17.10; p � 0.01) and � (F(2,2900) � 10.58; p �
0.01) frequency bands during W and REM sleep, respectively,
whereas no significant changes were observed with 6.0 pmol of

UII. These increases in EEG power density were blocked by the
SB-710411 (Fig. 3).

Administration of UII into the LC produced no significant
change in the amount of W (125.94 � 12.58 min), SWS1 (9.81 �
1.0 min), SWS2 (197.19 � 9.51 min), and REM sleep (27.12 �
5.45 min) compared with saline administration (W, 111.63 �
3.52; SWS1, 10.38 � 2.03; SWS2, 200.25 � 4.31; REM sleep,
37.87 � 3.59 min). Significant differences between groups were
not observed in the sleep parameters or in the EEG power spectra
(data not shown).

Effects on cortical blood flow
Administration of 0.6 pmol of UII into the PPT nucleus did not
induce major changes in cortical blood flow compared with

Figure 2. Effects of bilateral administration of UII into the PPT nucleus on the amount of W,
SWS1, SWS2, and REM sleep across recording time. Values (mean � SEM; n � 6 rats for each
UII-treated group, and n � 4 for the group pretreated with the antagonist for UII receptors)
represent the relative amount of the vigilance states, expressed as a percentage of total time of
recording. Significant group effects of UII were identified using one-way ANOVA and Sheffé’s F
test and are indicated by asterisks (for values, see Results). Error bars represent SEM.
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saline, and only a slight increase (7.4%) was observed 30 min after
injection (F(1,8) � 5.73; p � 0.05) (Fig. 4A).

Effects of intracerebroventricular administration of UII
Effects on the sleep–wake patterns and EEG spectra
To test whether intracerebroventricular administration of UII
induces changes in sleep–wake patterns, we challenged the ani-
mals with 0.6 nmol of UII. UII induced a significant increase of
37.0% in the total amount of W during the first hour after treat-
ment, compared with saline administration (F(1,10) � 5.574; p �
0.05). The amount of SWS2 was significantly decreased 1 and 2 h
after UII injection (53.3 and 20.0%, respectively; F(1,10) � 12.84,
p � 0.01; F(1,10) � 14.68, p � 0.01, respectively), compared with
saline administration. Likewise, intracerebroventricular admin-
istration of 0.6 nmol of UII induced a significant increase of 78.7,

108.1, and 108.8% in the amount of REM sleep 2, 3, and 5 h after
treatment, respectively (F(1,10) � 24.68, p � 0.001; F(1,10) � 8.21,
p � 0.01; and F(1,10) � 11.19, p � 0.01, respectively) compared
with saline injections (Fig. 5). No significant differences were
observed in the amount of SWS1 after the administration of UII.
The effects on REM sleep after intracerebroventricular adminis-
tration of UII were attributable to an increase of 85.2% in the
mean number of REM sleep episodes (F(1,10) � 21.03; p � 0.001)
compared with saline, without significant changes in other sleep
parameters measured in this study (Table 1).

EEG power spectra analysis in the different sleep–wake stages
showed a significant increase in power both in � ( p � 0.01) and �
( p � 0.01) bands during W, as well as an increase in � during
REM sleep ( p � 0.01) after the administration of 0.6 nmol of UII
compared with saline (Fig. 6). The mean power for � was reduced
in SWS2 after administration of UII; however, this reduction did
not reach significant values.

Table 1. Sleep parameters (mean � SEM; in minutes during the 6 hr recording period)

Sleep latency REM latency SWS1-F SWS1-D SWS2-F SWS2-D REM-F REM-D

Vehicle 23.50 � 6.89 44.00 � 9.56 39.00 � 5.38 0.37 � 0.06 116.66 � 15.99 1.70 � 0.24 21.66 � 2.57 1.66 � 0.06
UII (0.6 pmol) into PPT 24.33 � 7.11 49.50 � 9.53 54.00 � 7.57 0.31 � 0.01 116.16 � 10.17 1.57 � 0.14 31.50 � 2.92* 1.53 � 0.11
UII (6.0 pmol) into PPT 20.66 � 4.18 48.83 � 4.73 49.00 � 2.79 0.31 � 0.01 124.33 � 5.30 1.47 � 0.13 25.33 � 2.30 1.47 � 0.05
SB-710411 (3 ng) plus UII (0.6 pmol) into PPT 15.81 � 3.21 33.56 � 13.02 46.00 � 2.48 0.28 � 0.01 102.25 � 10.78 1.95 � 0.31 21.50 � 2.78 1.63 � 0.10
Vehicle 20.20 � 2.93 41.41 � 5.80 55.83 � 11.75 0.31 � 0.01 122.66 � 5.60 1.38 � 0.12 26.00 � 3.02 1.27 � 0.12
UII (0.6 nmol, i.c.v.) 24.37 � 6.07 31.50 � 6.41 39.66 � 1.45 0.28 � 0.01 129.16 � 7.98 1.20 � 0.06 48.16 � 3.77* 1.21 � 0.06

D, Duration; F, frequency. *p � 0.05.

Figure 3. Effects of bilateral injection of UII into the PPT nucleus on EEG power spectra.
Administration of 0.6 pmol of UII induced a significant increase in the � (A; p � 0.01) and � (B;
p � 0.01) power compared with saline and 6.0 pmol of UII, indicating that microinjection of UII
into the PPT nucleus induces cortical activation. Note that these effects were blocked by pre-
treatment with the UII receptor antagonist SB-710411. Error bars represent mean values
(�SEM; n � 6 rats for each UII-treated group, and n � 4 for the group pretreated with
SB-710411). Significant effects of UII compared with saline group are indicated by asterisks and
were obtained using one-way ANOVA and a Sheffé’s F test.

Figure 4. Effects of UII on cortical blood flow. A, The effects of a bilateral injection of 0.6 pmol
of UII into the PPT nucleus. B, The effects of an intracerebroventricular injection of 0.6 nmol of
UII. Each point represents mean values (�SEM; n � 5 rats per group) recorded every 5 min.
Values are expressed as the percentage of the values for the same rat before UII treatment
(100%). The arrow indicates the time of injection of UII. Significant effects of UII were identified
using one-way ANOVA and a Sheffé’s F test and are indicated by asterisks (for values, see
Results). Error bars represent SEM.
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Effects on cortical blood flow
Administration of 0.6 nmol of UII (intracerebroventricularly)
resulted in a pronounced increase in cortical blood flow com-
pared with saline treatment (F(1,8) � 5.73; p � 0.05), starting 20
min after injection. The most prominent increase was observed
between 90 and 180 min after UII treatment, when the blood flow
values increased 	30% compared with saline (Fig. 4B).

Whole-cell recordings
To investigate the actions of UII on mesopontine cholinergic
neurons near the effective injection sites, whole-cell recordings
were obtained from 15 neurons in the rat PPT nucleus (mean
input resistance, 287 � 43 M�; mean capacitance, 65 � 5.0 pF).
Under whole-cell voltage-clamp conditions (holding potential,
�60 mV), 300 nM UII evoked a slow inward shift of the holding

current (�11.8 � 1.9 pA; mean � SEM) (Fig. 7A) in 11 of 15 PPT
neurons, which was accompanied by a 35% increase in input
resistance [from 241 � 28 to 324 � 36 M� (�SEM)]. These
actions were specific for cholinergic neurons ( p � 0.009; Fisher’s
test), because UII evoked such an inward current in 11 of 12
bNOS-immunopositive neurons, whereas UII failed to have an
effect on three of three bNOS-immunonegative PPT neurons
(Fig. 7B).

As expected, current-clamp recordings revealed that UII pro-
duced membrane depolarization and an increase in firing of PPT
neurons (n � 6 of 8; 4 of 6 confirmed bNOS-immunopositive).
An example of the ability of UII to alter spike discharge rate is
shown in Figure 8A, in which the UII-evoked depolarization
drives a quiescent neuron into prolonged repetitive firing. The
amplitude of the membrane depolarization elicited by UII was
estimated to be 5.7 � 1.2 mV in neurons held at subthreshold
potentials (n � 3). After blockade of action potentials and fast
synaptic activity with TTX, APV, DNQX, strychnine, and bicu-
culline, UII still evoked comparable depolarizations (7.0 � 0.6
mV; n � 3; all bNOS-immunopositive) (for sample response, see
Fig. 8B), suggesting a postsynaptic site of action. As observed in
voltage-clamp recordings, membrane input resistance also in-
creased during these UII-evoked depolarizations (Fig. 8C). Fi-
nally, in the time frame of our recording experiments, a second
application of UII only produced responses that were greatly at-
tenuated, consistent with desensitization. Collectively, data from
whole-cell recordings strongly suggest that UII selectively and
directly excites cholinergic PPT neurons by activating a slow in-
ward current.

Discussion
We hypothesized that the UII system could be involved in the
regulation of REM sleep based on the fact that UII receptors
colocalize with ChAT in the mesopontine tegmental area, includ-
ing PPT and LDT nuclei (Clark et al., 2001). Our results show that
both local PPT and intracerebroventricular administration of
low doses of UII dramatically increased the total time of REM
sleep in rats. This effect could be accounted for by a significant
increase in the number of REM episodes. Likewise, our results
showed that UII selectively excites PPT cholinergic neurons at
their resting membrane potential by activating a slow inward
current (Fig. 7), supporting the hypothesis that increments in
REM sleep caused by UII could be a result of neuroexcitation of
mesopontine cholinergic neurons. In addition, the absence of a
UII-related increase in REM sleep in both animals pretreated
with SB-710411 and rats treated with UII in the LC strongly sug-
gests that UII regulates REM sleep through activation of UII re-
ceptors located in PPT neurons and that its effects are not medi-
ated through metabolic products.

Both the LDT and PPT send cholinergic projections to the
REM sleep, generating neurons located in the pontine reticular
formation (Mitani et al., 1988). These inputs, when stimulated,
produce EPSPs in the pontine reticular formation neurons (Imon
et al., 1996; Homma et al., 2002). Because of the stimulatory effect
of UII on PPT neurons, it is likely that UII induces acetylcholine
release in the pontine reticular formation and induces REM sleep.
The magnitude of the increase in REM recorded in this study is at
least as large as that recorded when carbachol is injected into the
oral pontine reticular nucleus of the rat, which induces an in-
crease in REM sleep episodes with no change in episode length or
latency to REM onset (Bourgin et al., 1995). Microinjection of
carbachol into the medial gigantocellular tegmental field pro-
duces an increase in ACh release for 7 h that has been related to

Figure 5. Effects of intracerebroventricular injection of UII into the PPT nucleus on the
amount of W, SWS1, SWS2, and REM sleep across recording time. Values (mean � SEM; n � 6
rats per group) represent the amount of the states of vigilance, expressed as a percentage of
total time of recording. Significant effects of UII compared with the saline group were obtained
using an unpaired bidirectional t test and are indicated by asterisks (for values, see Results).
Error bars represent SEM.

Figure 6. Effects of intracerebroventricular injection of 0.6 nmol of UII on the EEG power. UII
induced a significant increase in the mean power of � (A; p � 0.01) and � (B; p � 0.01) bands
during W, as well as a significant increase in � during REM sleep (D; p � 0.01) compared with
saline, whereas UII reduced the � power in SWS2. However, this reduction did not reach signif-
icant levels (C). These results confirm the role of UII in cortical activation. Bars represent mean
values (�SEM; n � 6 rats per group). Significant effects of UII compared with the saline group
were identified using a t test and are indicated by asterisks.
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PPT/LDT activation (Lydic et al., 1991; Lydic and Baghdoyan,
1993), whereas glutamatergic stimulation of PPT increases REM
sleep up to 6 h after injection (Datta et al., 2001). These results
mirror the parameters of the UII-induced increase in REM state.
The slow onset of the UII-induced increase in REM sleep in our
studies could be caused by the slow diffusion rate of UII in the
brain parenchyma, as described previously for hypocretin (Hcrt)
(Bourgin et al., 2000).

There are significant differences between the UII-related REM
sleep effects and the activation of PPT neurons by microinjection
of excitatory amino acids such as L-glutamate. Glutamatergic
stimulation of the PPT in rats reduces REM sleep latency and
increases REM sleep because of an increase in both duration and
number of episodes of REM sleep (Datta et al., 2001). We did not

observe significant changes in the latency
or duration of REM sleep episodes in the
animals treated with UII, suggesting that
UII produces a stimulation that is different
from the glutamatergic stimulation of the
mesopontine cholinergic neurons. It is un-
likely that the observed excitation of the
PPT nucleus is mediated by glutamate, be-
cause the effect of UII was independent of
ionotropic blocking of ionotropic gluta-
mate receptors (Fig. 8). Furthermore,
breakdown of UII in the doses used here
would give rise to a maximal concentra-
tion of glutamate of 4 �M, a concentration
that would be ineffective at activating glu-
tamate receptors.

Our results also show that UII affects
REM sleep at lower doses and is not effec-
tive at higher doses. A possible explanation
for this result could be the desensitization
of UII responses, as suggested by our
whole-cell recordings. This is supported
by studies showing that UII receptors lo-
cated in the aorta of rats desensitize after a
double treatment at intervals of 5 h, with
different doses of human UII (Camarda et
al., 2002). Moreover, UII receptors heter-
ologously expressed in cell lines desensi-
tize after repeated UII treatment (H.-P.
Nothacker, personal communication).
Additional studies are necessary to estab-
lish the dose dependency and the molecu-
lar base for the observed phenomenon.

Spectral analysis of cortical EEGs
showed a differential EEG activation effect
between local PPT and intracerebroven-
tricular treatment of UII in freely moving
animals. Thus, injection of UII into the
PPT nucleus significantly increases �
power in W and hippocampal theta
rhythm during REM sleep, suggesting an
activation of the PPT nucleus (Vertes et al.,
1993; Kinney et al., 1998; Nowacka et al.,
2002). In contrast, intracerebroventricular
injection of UII increased high-frequency
EEG bands during W and REM sleep, sug-
gesting UII-induced cortical activation
through cholinergic neurons. This is con-
sistent with the fact that activating cholin-

ergic thalamic afferents produces cortical activation by suppress-
ing slow cortical waves between 0.3 and 4.0 Hz and spindle wave
oscillations (11.0 –14.0 Hz) (Hu et al., 1989; Curro Dossi et al.,
1991; Steriade et al., 1993).

Another key finding of this study was that UII excited bNOS-
immunopositive PPT neurons by activating a slow inward cur-
rent without affecting recorded bNOS-immunonegative neu-
rons, at least at the membrane potentials studied (near rest). This
suggests that local application of UII specifically targeted the cho-
linergic subpopulation of the PPT, as expected from the distribu-
tion of UII receptor mRNA (Clark et al., 2001). In unclamped
conditions, UII depolarized cholinergic neurons and promoted
firing. Blocking action potential discharge and antagonizing fast
glutamatergic, GABAergic, and glycinergic neurotransmission

Figure 7. UII selectively excites bNOS-immunopositive mesopontine cholinergic neurons by evoking an inward current. A, Top,
Membrane current from a PPT cell clamped near resting membrane potential (�60 mV) before and after bath superfusion of 300
nM UII. The slow inward current was observed in bNOS-immunopositive neurons. A1, The neuron from which the membrane
current was obtained (Alexa 594; red). A2, The same field, with cholinergic neurons visualized by bNOS immunocytochemistry
(FITC; green). A3, The two images, merged, revealing that the recorded neuron was immunoreactive for bNOS (yellow). The DIC
image in A4 was obtained at the end of the recording and identifies the location of the recorded cell at the electrode tip. scp,
Superior cerebellar peduncle; ll, lateral lemniscus; cll, commissural fibers of the ll. B, Bottom, Membrane current of a bNOS-
immunonegative PPT neuron was unchanged after superfusion of UII. B1–B4 show that the recorded neuron was bNOS-
immunonegative and also show its location (imaging is as described for A1–A4). Scale bars (for A and B): B1, 50 �m (for
immunofluorescent images); B4, 200 �m (for DIC images). Breaks in current traces after UII application result from voltage jumps
to assess conductance changes.
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did not attenuate the response to UII. This is consistent with a
direct postsynaptic action of UII and, considering our immuno-
chemical findings, implies that the functional UII receptors re-
side on cholinergic PPT neurons.

We also found that input resistance increased during UII-
evoked excitation in both voltage-clamp and bridge-mode re-
cordings. This suggests that UII acts by blocking a hyperpolariz-
ing conductance, which is activated around the resting potential,
e.g., a potassium current. Additional work will be necessary to
identify the underlying current(s). Nevertheless, this elevation of
input resistance should also enhance the effectiveness of synaptic
inputs, which may further increase PPT neuron excitation.

The UII-evoked increase in PPT neuron discharge rate will
also promote the release of ACh at PPT target structures, such as
the thalamus and reticular formation. Indeed, UII may have a
general role in promoting ACh release, because, in the periphery,
UII stimulates contractions of the ileum by activating myenteric
neurons to release ACh (Horie et al., 2003) and acts on frog
motoneuron terminals to increase spontaneous ACh release
(Brailoiu et al., 2003). Although it is not known whether UII acts
at central cholinergic terminals, such an action could also facili-
tate ACh release and deserves additional investigation.

The slow excitatory action of UII was reminiscent of the exci-
tatory action of Hcrt on mesopontine cholinergic neurons in the
LDT (Burlet et al., 2002), although Hcrt activates a broader range
of neurons. In the LDT, Hcrt directly activates both cholinergic
and noncholinergic neurons, as well as glutamatergic afferents,
which synapse on both types of neurons (Burlet et al., 2002).
Thus, although Hcrt stimulates the entire reticular activating sys-
tem (for review, see Siegel, 2004), UII actions appear restricted to
the cholinergic component. This difference in cellular sensitivity
to the two peptides may have considerable functional impor-

tance, because local application of Hcrt enhances waking and
suppresses REM sleep (Xi et al., 2001), whereas UII enhances
REM sleep.

Previous studies have shown that UII possesses vasoactive
properties in fish and mammals (Pearson et al., 1980; Gibson et
al., 1986; Ames et al., 1999). We characterized the consequences
of UII on regional cerebral blood flow by LD flowmetry (Skar-
phedinsson et al., 1988; Haberl et al., 1989a,b; Lindsberg et al.,
1989; Muir et al., 1992). Although LD flowmetry is not quantita-
tive, it monitors relative changes in regional cerebral blood flow
quite accurately (Iadecola, 1997). Our results showed that local
PPT administration of UII did not alter the CBF in halothane-
anesthetized animals, suggesting that the effect of UII on REM
sleep is not dependent on the CBF effects. In contrast, intracere-
broventricular administration of UII increased CBF. The cortical
hemodynamic effect could be associated with the UII activation
of different brain areas involved in cardiovascular regulation
(Martin and Haywood, 1992; Kubo et al., 1997; Comer et al.,
1998; Haywood et al., 2001). In fact, local injection of UII into the
paraventricular nucleus, arcuate nucleus, and noradrenergic cells
in the lower part of the medulla induces cardiovascular effects
(Lu et al., 2002). Thus, UII may have a neurogenic role in the
regulation of cardiovascular physiology, and this may be the
cause of the intracerebroventricular application-induced blood
flow effects shown here. Despite these findings, an increase in
cortical blood flow is not seen with local injections into the PPT.
It is, therefore, likely that the blood flow increases are not a result
of mesopontine cholinergic activation and would be a result of
UII acting on noncholinergic neuronal sites (Lu et al., 2002).
However, additional studies are needed to confirm that UII does
not induce changes in local blood flow.

Together, the results are consistent with a role for UII in the
regulation of REM sleep by activating mesopontine cholinergic
neurons directly and independently of the cardiovascular effects
of UII.
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