Reply to M. Lambertini et al

Kutluk Oktay
New York Medical College

V Turan

G Bedoschi

Follow this and additional works at: https://touroscholar.touro.edu/nymc_fac_pubs

Part of the Obstetrics and Gynecology Commons, and the Oncology Commons

Recommended Citation

This Response or Comment is brought to you for free and open access by the Faculty at Touro Scholar. It has been accepted for inclusion in NYMC Faculty Publications by an authorized administrator of Touro Scholar. For more information, please contact touro.scholar@touro.edu.
Reply to M. Lambertini et al

Lambertini et al1 challenge the conclusion of the randomized controlled study by Demeestere et al,2 which showed lack of gonadal protective effect from gonadotropin-releasing hormone agonist (GnRHa) suppression in women with lymphoma based on quantifiable serum ovarian reserve markers. Lambertini et al suggest that their studies9,4 have provided consistent results and support conclusions opposite of those of Demeestere et al.2 However, the studies differ significantly in their design, primary outcome measures, patient populations, and pregnancy outcomes (Table 1).5-7

Lambertini et al1 cite their own meta-analysis as proof of GnRHα’s effectiveness for fertility preservation. As previously discussed,5 meta-analyses do not correct for original study weaknesses, and there is no biologic rationale in limiting meta-analyses to breast cancer. When all studies that also include hematologic cancers are meta-analyzed, there remains no benefit from GnRHa.8

In addition to using a specific definition of premature ovarian failure (POF) and primary ovarian insufficiency (POI) involving amenorrhea and follicle-stimulating hormone greater than 40 mIU/mL as the primary outcome measure, Demeestere et al1 measured serum anti-mullerian hormone (AMH) levels to corroborate their findings. Serum AMH is the most reliable quantitative marker in measuring ovarian reserve, diagnosing occult POI (a state that is induced in most women by breast cancer chemotherapy), and predicting age at menopause. None of the studies that used AMH as a marker showed benefit from the addition of GnRHa treatment (Table 1).

Lambertini et al1 surmise that pregnancies nullify the designation of the study patients as having POI/POF. This is not a correct assessment. First, there is 5% to 15% spontaneous live birth rate among those who are designated to be in POI. Second, spontaneous pregnancies do occur, even among those who are induced to become menopausal by highly gonadotoxic preconditioning chemotherapy for hematopoietic stem-cell transplantation. Because in these young patients the egg quality is not reduced after chemotherapy, the conceptions may be a result of the ability of few remaining follicles to ovulate sporadically or possibly the ability of some oocytes to self-repair chemotherapy-induced DNA damage.5,9 Hence, pregnancy and POI/POF are not exclusive; what is important is that the probability of pregnancy is significantly reduced after gonadotoxic chemotherapy.

Because breast cancer chemotherapy regimens often do not induce complete POF/POI but rather result in occult POI, many women still retain some reserve and have the ability to spontaneously conceive, albeit at reduced probability. Hence, it is not surprising that, in an unblinded and non-placebo-controlled design where the data are not corrected for pregnancy intent and attempt and the women who are aware of their GnRHa treatment could be more motivated to attempt pregnancy, one may inaccurately interpret those incidental conceptions as being GnRHa-treatment enabled.

Lambertini et al1 also suggest that the use of norethisterone by Demeestere et al2 blunted GnRHα’s benefit on ovarian function by suppressing the pituitary gonadotropin secretion in the control group. This claim has numerous weaknesses. First, primordial follicles that make up the ovarian reserve are quiescent, do not express gonadotropin or GnRHa receptors,3 and hence have no pathway for responding to changes in serum gonadotropin on gonadotropin-releasing hormone levels. Second, if the authors’ claim were to be true, we would then expect any form of ovarian suppression including oral contraceptives to preserve ovarian function against chemotherapy, which is not the case. Third, unlike combined contraceptive pills, progestin-only treatments have a weak suppressive effect on serum gonadotropin levels. They induce amenorrhea primarily by their effects on endometrium, not the pituitary. Fourth, to further cast doubt that GnRHAs preserve ovarian function by suppressing serum follicle-stimulating hormone levels, a time-honored randomized study by Waxman et al10 showed that serum gonadotropin levels are not suppressed below minimum physiologic levels seen during a menstrual cycle (excluding the time of ovulation) even after months of administration. Finally, Lambertini et al1 suggest that GnRHAs may preserve ovarian endocrine function even if they do not improve the chance of pregnancy. This hypothesis does not par with ovarian biology. Hormone production and fertility are coupled functions of the ovary. Hence, in studies that show continued vaginal bleeding but not preservation of fertility,3,4 one will have to look at explanations other than the effectiveness of GnRHa treatment. These include observational biases as a result of lack of blinding and placebo and use of nonquantitative and subjective markers such as the return of any kind of menstrual bleeding.5,7,11

On the basis of reliable data and basic ovarian biologic facts, GnRHa suppression cannot be considered as an effective method of ovarian or fertility preservation. Just-in-case administration of GnRHa over prolonged periods of time cannot be justified given the cost, potential adverse effects including irreversible bone loss, and the risk of counseling away from proven methods of fertility preservation via embryo, oocyte, and ovarian tissue cryopreservation.11

Kutluk Oktay, Volkan Turan, and Giuliano Bedoschi
New York Medical College and Innovation Institute for Fertility Preservation, New York, NY

ACKNOWLEDGMENT
Supported by Grant No. RO1HD053112 from the National Institutes of Health (National Institute of Child Health and Human Development and National Cancer Institute).

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
Disclosures provided by the authors are available with this article at jco.org.
Table 1. Comparison of Randomized Studies That Used Serum AMH to Studies by Lambertini et al.¹ and Moore et al.²

<table>
<thead>
<tr>
<th>Study</th>
<th>Cancer Type</th>
<th>Patient Age (years)</th>
<th>Sample Size</th>
<th>Primary Outcome</th>
<th>Secondary Outcome</th>
<th>Conclusion</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demeestere et al.³ 2013</td>
<td>Hodgkin and non-Hodgkin lymphoma</td>
<td>18-38</td>
<td>GnRHa plus Chemo plus norethisterone acetate, n = 65; Chemo plus norethisterone, n = 64</td>
<td>POF; FSH level > 40 mIU/mL at 12 months of follow-up</td>
<td>AMH; early menstrual FSH and E2</td>
<td>Triptorelin was not associated with a significantly decreased risk of POF</td>
<td>Relatively short follow-up period</td>
</tr>
<tr>
<td>Demeestere et al.⁴ 2016</td>
<td>Hodgkin and non-Hodgkin lymphoma</td>
<td>18-38</td>
<td>GnRHa plus Chemo, n = 32; Chemo alone, n = 35</td>
<td>POF; FSH level > 40 mIU/mL at approximately 66 months of follow-up</td>
<td>AMH; early menstrual FSH and E2; pregnancy rate</td>
<td>Triptorelin was not associated with a significantly decreased risk of POF and did not influence future pregnancy rate</td>
<td>One of the best-designed studies</td>
</tr>
<tr>
<td>Elgindy et al.⁵ 2013</td>
<td>Breast cancer (ER negative)</td>
<td>18-40</td>
<td>Early Chemo alone, n = 25; early Chemo and antagonist, n = 25; delayed Chemo alone, n = 25; delayed Chemo plus GnRHa, n = 25</td>
<td>Resumption of menstrual cycles 12 months after Chemo</td>
<td>Resumption of regular menstrual cycles; random FSH, LH, and E2, as well as AMH and AFC, 12 months after the end of Chemo</td>
<td>Triptorelin cotreatment does not offer a significant protective effect on ovarian function</td>
<td>One of the best-designed studies</td>
</tr>
<tr>
<td>Gerber B (ZORO study)⁶ 2011</td>
<td>Breast cancer (ER negative)</td>
<td>18-45</td>
<td>Chemo plus goserelin, n = 30; Chemo alone, n = 31</td>
<td>Resumption of menstrual cycles (2 consecutive menstrual periods within 21-35 days in a time frame of 6 months after Chemo) after 24-month follow-up</td>
<td>Time until recovery of regular menstrual cycles; random AFC, AMH, FSH, LH, and E2 at 6, 12, 18, and 24 months after end of Chemo; pregnancy rate</td>
<td>Patients using goserelin alone with Chemo did not experience a statistically significantly lower risk of amenorrhea 6 months after Chemo compared with patients receiving Chemo alone</td>
<td>Serum FSH and E2 were not drawn on cycle day 2 or 3, but a less cycle-dependent marker, AMH, was used</td>
</tr>
<tr>
<td>Moore et al.⁷ 2015</td>
<td>Breast cancer (ER negative)</td>
<td>18-49</td>
<td>Chemo alone, n = 69; Chemo plus goserelin, n = 66</td>
<td>Rate of POF (ovarian failure was defined as amenorrhea for the preceding 6 months and FSH levels in the postmenopausal range at 2 years)</td>
<td>Pregnancy within the past 5 years, assessed annually; ovarian dysfunction (amenorrhea in the preceding 3 months) and FSH, E2, or inhibin B levels in the postmenopausal range</td>
<td>Administration of goserelin with Chemo appeared to protect against ovarian failure</td>
<td>Trial was terminated prematurely as a result of lack of funding; any bleeding without regularity was considered as menstruation; random hormone profile measurements without using AMH; pregnancy rates are not different when intent is considered</td>
</tr>
<tr>
<td>Lambertini et al.⁸ 2015</td>
<td>Breast cancer (ER negative and positive)</td>
<td>24-45</td>
<td>Chemo alone, n = 133; GnRHa plus Chemo, n = 148</td>
<td>Early menopause, resumption of menstrual cycles (evaluated by yearly assessment of menstrual activity)</td>
<td>Long-term ovarian function (considered as preserved by the occurrence of at least 1 menstrual cycle), pregnancies, and disease-free survival</td>
<td>Triptorelin was associated with higher long-term probability of ovarian function recovery, without a statistically significant difference in pregnancy rates</td>
<td>Any bleeding without regularity was considered as menstruation; no information regarding the definition of postmenopausal status; no difference was found in terms of pregnancy outcomes among groups</td>
</tr>
</tbody>
</table>

Abbreviations: AFC, antral follicle count; AMH, anti-müllerian hormone; Chemo, chemotherapy; E2, estradiol; ER, estrogen receptor; FSH, follicle-stimulating hormone; GnRHa, gonadotropin-releasing hormone agonist; LH, luteinizing hormone; POF, premature ovarian failure; ZORO, Zoladex Rescue of Ovarian Function.

REFERENCES

808 © 2016 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY
DOI: 10.1200/JCO.2016.70.6101; published at jco.org on November 28, 2016.
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Reply to M. Lambertini et al

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/site/ifc.

Kutluk Oktay
No relationship to disclose

Volkan Turan
No relationship to disclose

Giuliano Bedoschi
No relationship to disclose