Estrogen-Dependent Epigenetic Regulation of Soluble Epoxide Hydrolase via DNA Methylation

Yang-Ming Yang
New York Medical College

Dong Sun
New York Medical College

Sharath Kandhi
New York Medical College

Ghezal Froogh
New York Medical College

Jian Zhuge

See next page for additional authors

Follow this and additional works at: https://touroscholar.touro.edu/nymc_fac_pubs

Part of the Medicine and Health Sciences Commons

Recommended Citation
Authors
Yang-Ming Yang, Dong Sun, Sharath Kandhi, Ghezal Froogh, Jian Zhuge, Wei-Hua Huang, Bruce D. Hammock, and An Huang

This article is available at Touro Scholar: https://touroscholar.touro.edu/nymc_fac_pubs/1352
Estrogen-dependent epigenetic regulation of soluble epoxide hydrolase via DNA methylation

Yang-Ming Yang*, Dong Sun*, Sharath Kandhi*, Ghezal Froogh*, Jian Zhuge†, Weihua Huang†, Bruce D. Hammock‡,§,∥ and An Huang*∥

*Department of Physiology, New York Medical College, Valhalla, NY 10595; ‡Department of Pathology and Clinical Laboratories, Westchester Medical Center, Valhalla, NY 10595; §Department of Pathology, New York Medical College, Valhalla, NY 10595; ¶Department of Entomology and Nematology, University of California, Davis, CA 95616; and ‖University of California Davis Comprehensive Cancer Center, University of California, Davis, CA 95616

Contributed by Bruce D. Hammock, November 27, 2017 (sent for review September 13, 2017; reviewed by Wei Dai and Elizabeth Murphy)

To elucidate molecular mechanisms responsible for the sexually dimorphic phenotype of soluble epoxide hydrolase (sEH) expression, we tested the hypothesis that female-specific down-regulation of sEH expression is driven by estrogen-dependent methylation of the Ephx2 gene. Mesenteric arteries isolated from male, female, ovariectomized female (OV), and OV with estrogen replacement (OVE) mice, as well as the human cell line (HEK293T) were used. Methylation-specific PCR and bisulfite genomic sequencing analysis indicate significant increases in DNA/CpG methylation in vessels of female and OVE compared with those of male and OV mice. The same increase in CG methylation was also observed in male vessels incubated with a physiological concentration of 17β-estradiol (17β-E2) for 48 hours. All vessels that displayed increases in CG methylation were concomitantly associated with decreases in their Ephx2 mRNA and protein, suggesting a methylation-induced gene silencing. Transient transfection assays indicate that the activity of Ephx2 promoter-coding luciferase was significantly attenuated in HEK293T cells treated with 17β-E2, which was prevented by additional treatment with an estrogen receptor antagonist (ICI). ChIP analysis indicates significantly reduced binding activities of transcription factors (including SP1, AP-1, and NF-κB) with their binding elements located in the Ephx2 promoter) in vessels of female mice and human cells treated with 17β-E2, responses that were prevented by ICI and Decitabine (DNA methyltransferase inhibitor), respectively. In conclusion, estrogen/estrogen receptor-dependent methylation of the promoter of Ephx2 gene silences sEH expression, which is involved in specific transcription factor-directed regulatory pathways.

Significance

This study provides molecular evidence indicating that female hormone/estrogen enables inhibition of vascular soluble epoxide hydrolase (sEH) expression in physiological conditions via an epigenetic-based regulatory mechanism, leading to an increase in the vascular level of epoxycosatrienoic acids (EETs) that: (i) possess cardio-protective properties, such as vasodilation, resulting in better blood supply to tissues and lower blood pressure, and (ii) are degraded/inactivated by sEH. To this end, increases in tissue EETs, as a consequence of estrogen suppression of sEH to reduce EET degradation, can serve as an explanation, at least in part, of why women in general perform better cardiovascular functions, associated with lower incidence of ischemic cardiovascular diseases, compared with men.

Reviewers: W.D., New York University School of Medicine; and E.M., National Institutes of Health.

Conflict of interest statement: B.D.H. is the author of University of California patents on the synthesis and use of soluble epoxide hydrolase inhibitors. These patents are licensed to EisDis LLC.

Published under the PNAS license.

*To whom correspondence may be addressed. Email: an_huang@nycmc.edu or bdhammock@ucdavis.edu.

This article contains supporting information online at www.pnas.org/cgi/doi/10.1073/pnas.1716016115

www.pnas.org/cgi/doi/10.1073/pnas.1716016115
the sex-specific phenotype, in terms of female-led down-regulation of sEH, is driven by estrogen-dependent methylation of the Ephx2 gene, a response that is categorized as an epigenetic regulation.

Epigenetics is defined as “the interactions of genes with their environment that bring the phenotype into being.” Epigenetics is characterized as inheritable changes in the expression pattern of a gene, which is not caused by alterations in the nucleotide sequence of the genetic code per se, but rather triggered by modifications in DNA-associated molecules, such as small non-coding RNAs, or by chemical modifications of DNA, such as DNA methylation (14). DNA methylation is a typical epigenetic event that involves attachment of a methyl group \((\text{CH}_3)\) on the 5’ carbon position of the cytosine ring, and occurs basically at the site of a CG dinucleotide (15), oligos that are present mostly in the promoter region of genes. Thus, the presence of putative CpG sites and specific transcription factor (TF) binding elements in the promoter region of the human Ephx2 gene (16, 17) provide the molecular basis for the methylation-dependent silencing of Ephx2 expression. The present study was therefore, conducted on both freshly isolated mouse arteries and a human cell line to verify the estrogen-induced down-regulation of Ephx2 gene expression as a result of CG methylation.

Results

Estrogen-Dependent Transcriptional Down-Regulation of sEH. To verify that female-specific down-regulation of sEH expression occurs at the transcriptional level, as a function of estrogen, Ephx2 mRNA expression in mesenteric arteries isolated from male and female mice, and male vessels incubated with a physiological concentration of 17β-estradiol (17β-E2, 10 nM) for 48 h, were assessed. Real-time RT-PCR analysis indicates that female vessels exhibit a significantly reduced Ephx2 mRNA level by ∼80% (Fig. 1A), concomitantly with the same reduction in the protein expression (Fig. 1B) compared with male vessels. Similarly, male vessels treated with 17β-E2 also displayed the same suppression (∼80%) of Ephx2 mRNA (Fig. 1C) and protein content in a time-dependent manner (Fig. 1D), compared with untreated controls, suggesting that the down-regulation of vascular sEH in females is mediated via an estrogen-dependent transcriptionally regulated pathway.

![Fig. 1. Changes in sEH mRNA (A and C) and protein expression (B and D) in mesenteric arteries isolated from male and female mice (A and B) and male arteries with and without treatment with 17β-estradiol (E2, 10 nM) for 48 h (C). (D) Time-course of sEH protein expression in male vessels incubated without (as control) and with E2 for 24, 48, and 72 h, respectively. *Significant difference from controls (n = 5–6).](image)

![Fig. 2. (A) A mouse Ephx2 promoter region containing an ∼1,200-bp sequence upstream of the start codon (ATG in red), with 21 CpG sites numbered as −1 to −21 (gray shadow). The primers for MSP are shown with black underline arrows. The primers for both proximal (magenta underline arrows) and distal sequence (green underline arrows), ChIP PCR primers (red underline arrows), and specific binding elements for transcription factors of SP1 (gray box), AP-1 (red box), and NF-kB (blue box) are indicated. (B) Within the diagram of the mouse Ephx2 promoter region, each designated color or font pattern corresponds to the region on the nucleotide sequence in A. Additionally, the position of each CpG site is demarcated by gray bars.](image)
The Promoter Region of the Ephx2 Gene. Fig. 2 presents the mouse Ephx2 promoter region (GenBank accession no. AC126272.3). As indicated, there is ~1,200-bp sequence upstream of the Ephx2 coding region, containing 21 CpG sites, numbered from -1 to -21, that is located upstream of the start codon (ATG in red). The location of primers for both proximal (Fig. 2A, magenta underline arrows) and distal sequencing (Fig. 2A, green underline arrows) are marked. Specific binding elements for the TFs SP1 (Fig. 2A, gray box), AP-1 (Fig. 2A, red box), and NF-κB (Fig. 2A, blue box) are also indicated. In the present study, we focused on the methylation of CpG -13 and -15 using methylation specific PCR (MSP) to determine the methylated/unmethylated ratio. The primers for MSP (Fig. 2A, black underline arrows) were picked up by the software MethPrimer 2.0 (Li Laboratory, www.urogene.org/methprimer/). Fig. 2B is a diagrammatic sketch of the promoter region of Ephx2 gene.

Estrogen-Dependent Increase in Methylation of the Mouse Ephx2 Gene Promoter. The original tracing and summarized results from MSP are depicted in Fig. 3. Fig. 3A demonstrates that DNA methylation of CpG -13/-15 was significantly increased in vessels of female compared with male mice, as indicated by a greater ratio of methylated to unmethylated DNA (M/U) in female vessels, thereby yielding a sex-different CG methylation. A similar increase in methylation at CpG positions of -17/-18 of female vessels was also observed (Fig. 3B). To clarify if estrogen or other female hormones, such as progestosterone, are responsible for the sex-bias in methylation of the Ephx2 promoter, MSP was performed on mesenteric arteries that were isolated from ovariectomized (OV) female mice, OV mice with replacement of estrogen (OVE), and male arteries incubated with 17β-E2 (10 nM) or 17α-E2 (10 nM, physiologically inactive stereoisomer of E2) for 48 h. As shown in Fig. 3C, vessels isolated from OV mice exhibited a significant decrease in the methylation of CpG -13/-15 compared with vessels from intact females, which was comparable to vessels of male mice. Estrogen replacement (OVE) fully prevented the OV-induced reduction in DNA methylation. The functional consequence of ovariectomy was validated by the significant decreases in plasma 17β-E2 and uterus weight in an estrogen replacement-reversible manner. Moreover, treatment of male vessels with 17β-E2, but not 17α-E2, significantly increased DNA methylation (Fig. 3D and E). Collectively, results from both in vivo (females and OVE) and in vitro (male vessels treated with 17β-E2) treatment with estrogens provide solid evidence indicating that the sex-different methylation of the mouse Ephx2 promoter is purely an estrogen-mediated response.

Fig. 3. Original tracing and summarized data from MSP showing the ratio of methylated (m) to unmethylated (u) CG -13/-15 (A and C-E) and CG -17/-18 (B) in mesenteric arteries isolated from male (M) and female (F) mice (A and B), female mice with OV, and OVE (C), and male vessels treated with and without 10 nM 17β-E2 (D and E) or 17α-E2 (E). *Significant difference from male and OV. †Significant difference from male, female and OV (n = 4-6 for each group, except for E).
Promoter.

Promoter.

17 – gene Bisulfite – gene/sEH expression. Our findings show the significant attenuation of SP1 and AP-1 (ICI 182,780). These results indicate that gene promoter to silence the gene expression. In particular, 0.065) from male littermates. A ChIP assay was also performed in human cells, and similar results were observed. As indicated, the treatment of 293T cells with a physiological dose of 17β-E2 elicited significant decreases in SP1 (Fig. 5B). AP-1 (Fig. 5C), and NF-kB (Fig. 5D) binding activities, revealing a functionally identical responsiveness with mouse vesicles (Fig. 5A). At CG-rich promoter elements, the reduced SP1 binding activity was prevented by ER antagonist and a DNA methyltransferase (DNMT) inhibitor (5-Aza-CdR), respectively, implying an estrogen/ER-dependent DNA methylation of the binding sequences. However, alternative pathways that are capable of being activated by estrogen/ERs may be involved in the mediation of reductions in AP-1 and NF-kB binding activities.

Taken together, our results illustrate an integrated network that operates in concert with estrogen, ERs, DNA methylation, and TF binding activities to process the modulation of Ephx2 gene expression.

Discussion

We provide direct evidence that the molecular nature of the sexually dimorphic phenotype of sEH expression is an epigenetic-based event, by which estrogen, through ERs, methylates the Ephx2 gene promoter to silence the gene expression. In particular, specific TF binding motifs act as targets for estrogen to initiate DNA methylation (mainly in the CG-rich SP1 motif), or as a consequence of methylation in compromising access of their ligands (such as binding of c-jun or c-Fos with the AP-1 motif). While a previous study has reported methylation-induced Ephx2 gene silencing involved in SP1-binding activity in carcinoma HEPG2 cells (17), our studies identify CG methylation at the Ephx2 gene promoter as being triggered by estrogen. During this process, specific TFs interface with both methylation-direct and -indirect procedures to collectively constitute the main component of estrogen-mediated signaling through combinatorial and coordinated actions, leading to estrogen-specific physiological down-regulation of Ephx2 gene/sEH expression. Our findings uncover the molecular mechanism that provides explanations for the sexual dimorphism of sEH expression (3, 19) and all of the consequences arising there, defined as a female-favorable protection against cardiac and cerebral ischemia (7–12).

To unravel the mystery of a sexual dimorphism of Ephx2 gene expression, an epigenetic event emerged as our first consideration, since the definition of epigenetics states that heritable

| Table 1. Ratio of C/T (%) in CpG sites of upstream end of Ephx2 promoter |
|-----------------------------|----------------|----------------|----------------|----------------|
| Male (n = 2) | 32.5 | 35 | 52.5 | 67.5 |
| Female (n = 2) | 45 | 47.5 | 65 | 87.5 |

The percentage was calculated by estimating peak areas from each mouse using a Finch TV image.

Predominant Methylation of the Female Ephx2 Promoter. Bisulfite genomic sequencing (BGS) analysis was performed to investigate the CpG methylation status in flanked sequences of the major MSP amplicon and to provide a general profile of sex-differential methylation of the promoter. As shown in Fig. 2, there were 12 CpGs in the approximate sequencing region. The majority of these CpGs were unmethylated, but associated with more methylated mixture in females compared with males. On the other hand, Table 1 summarizes the results from the distal sequencing region (CpG sites −16 to −19) showing that both males and females exhibited decreases in methylation from upstream promoter toward the coding region (from CG −19 to −16), but females presented a greater potential for methylation of these CpG sites than males.

Specific Target Region for Estrogen-Mediated Methylation in the Ephx2 Promoter. To identify the specific target region of the Ephx2 promoter responsible for the estrogen-dependent methylation, as well as possible roles of estrogen receptors (ERs) in the mediation of estrogen responses, a luciferase-based reporter assay was conducted on a human cell line (293 cells). Fig. 4 shows that in comparison with pGL3-CMV, transfection with the pGL3-sEH promoter (0.4-kb fragment containing two groups of multiple SP1 binding sites, and one AP-1 and one NF-kB binding site), respectively elicited an ∼40% of total activation induced by the positive control. This activation was significantly attenuated by 17β-E2 (sEH promoter + 17β-E2), and completely reversed by the addition of an ER blocker (sEH promoter + 17β-E2 + ICI 182,780). These results indicate that 17β-E2 directly methylates the Ephx2 promoter region to inhibit sEH transcription via an ER-dependent mechanism. Alternatively, a shorter form of the Ephx2 promoter, which includes a deletion of a 0.4-kb promoter with a 0.12-kb fraction (upstream from five-flanking regions of putative transcriptional start codon of Ephx2) and contains only one group of SP1 binding sites, was also used. In response to transfection with the shorter promoter, treatment with 17β-E2 failed to significantly affect luciferase activity, negating the importance of the proximate end of the human Ephx2 promoter as a major target area for estrogen. Noteworthy, both human (Fig. 4) and mouse Ephx2 promoters (Figs. 1–3) exist with an identical responsiveness to 17β-E2, pointing to estrogen-dependent epigenetic regulation of the Ephx2 gene as being universally applicable.

Estrogen/ER Attenuation of TF Binding Activity. TFs play crucial roles in the regulation of gene expression, and both human and mouse Ephx2 promoter regions contain SP1, AP-1, and NF-kB binding elements (18) (Fig. 2). We therefore performed a ChIP assay to test whether sex-bias exists in TF binding activities, and if so, whether the change in TF binding is attributed to the estrogen-dependent methylation of the Ephx2 promoter (Figs. 3 and 4). Fig. S4 shows the significant attenuation of SP1 and AP-1 binding activities in female vessels compared with those of males, whereas the reduction in NF-kB binding activity of females was not statistically significant (P = 0.065) from male littermates. A ChIP assay was also performed in human cells, and similar results were observed. As indicated, the treatment of 293T cells with a physiological dose of 17β-E2 elicited significant decreases in SP1 (Fig. 5B), AP-1 (Fig. 5C), and NF-kB (Fig. 5D) binding activities, revealing a functionally identical responsiveness with mouse vesicles (Fig. 5A). At CG-rich promoter elements, the reduced SP1 binding activity was prevented by ER antagonist and a DNA methyltransferase (DNMT) inhibitor (5-Aza-CdR), respectively, implying
changes in the gene phenotype depend on the surrounding environment (15). In this context, an inherent cellular atmosphere that differs from one sex to the other can be primarily attributed to sex hormones. Indeed, the differential expression of certain genes that are selective targets of sex hormones, or are capable of being regulated by sex hormones, have been believed to be responsible for predisposing or protecting either of the sexes to or from cardiovascular diseases. In general, roles of female hormones/estrogens in the genetic regulation of target genes have been extensively studied (20); however, little is known regarding the estrogen-dependent epigenetic regulation of genes, in particular, via methylation-mediated signaling, which indeed, plays a fundamental role in the regulation of physiological and pathological processes. Given the presence of an unaddressed research subject for the physiological significance of epigenetic regulation of sEH by female hormones, we designed the studies aimed to answer the questions as to whether the female-specific phenotype of sEH expression is estrogen-dependent and is mediated by ERs. If so, whether the regulation is driven by DNA methylation and what transcription factors are involved?

Estrogen Mediates Methylation of the Ephx2 Promoter. Exposure of male vessels to exogenous estrogen significantly decreased Ephx2 mRNA (Fig. 1C) to the level induced by endogenous estrogens in females (Fig. 1A), indicating that the nature of female-specific down-regulation of sEH by female hormones, we designed the studies aimed to answer the questions as to whether the female-specific phenotype of sEH expression is estrogen-dependent and is mediated by ERs. If so, whether the regulation is driven by DNA methylation and what transcription factors are involved?

Estrogen/ER Mediates Methylation of the Ephx2 Promoter. Exposure of male vessels to exogenous estrogen significantly decreased Ephx2 mRNA (Fig. 1C) to the level induced by endogenous estrogens in females (Fig. 1A), indicating that the nature of female-specific down-regulation of sEH by female hormones, we designed the studies aimed to answer the questions as to whether the female-specific phenotype of sEH expression is estrogen-dependent and is mediated by ERs. If so, whether the regulation is driven by DNA methylation and what transcription factors are involved?

Estrogen Mediates Methylation of the Ephx2 Promoter. Exposure of male vessels to exogenous estrogen significantly decreased Ephx2 mRNA (Fig. 1C) to the level induced by endogenous estrogens in females (Fig. 1A), indicating that the nature of female-specific down-regulation of sEH by female hormones, we designed the studies aimed to answer the questions as to whether the female-specific phenotype of sEH expression is estrogen-dependent and is mediated by ERs. If so, whether the regulation is driven by DNA methylation and what transcription factors are involved?

Estrogen Mediates Methylation of the Ephx2 Promoter. Exposure of male vessels to exogenous estrogen significantly decreased Ephx2 mRNA (Fig. 1C) to the level induced by endogenous estrogens in females (Fig. 1A), indicating that the nature of female-specific down-regulation of sEH by female hormones, we designed the studies aimed to answer the questions as to whether the female-specific phenotype of sEH expression is estrogen-dependent and is mediated by ERs. If so, whether the regulation is driven by DNA methylation and what transcription factors are involved?

Estrogen Mediates Methylation of the Ephx2 Promoter. Exposure of male vessels to exogenous estrogen significantly decreased Ephx2 mRNA (Fig. 1C) to the level induced by endogenous estrogens in females (Fig. 1A), indicating that the nature of female-specific down-regulation of sEH by female hormones, we designed the studies aimed to answer the questions as to whether the female-specific phenotype of sEH expression is estrogen-dependent and is mediated by ERs. If so, whether the regulation is driven by DNA methylation and what transcription factors are involved?

Estrogen Mediates Methylation of the Ephx2 Promoter. Exposure of male vessels to exogenous estrogen significantly decreased Ephx2 mRNA (Fig. 1C) to the level induced by endogenous estrogens in females (Fig. 1A), indicating that the nature of female-specific down-regulation of sEH by female hormones, we designed the studies aimed to answer the questions as to whether the female-specific phenotype of sEH expression is estrogen-dependent and is mediated by ERs. If so, whether the regulation is driven by DNA methylation and what transcription factors are involved?

Estrogen Mediates Methylation of the Ephx2 Promoter. Exposure of male vessels to exogenous estrogen significantly decreased Ephx2 mRNA (Fig. 1C) to the level induced by endogenous estrogens in females (Fig. 1A), indicating that the nature of female-specific down-regulation of sEH by female hormones, we designed the studies aimed to answer the questions as to whether the female-specific phenotype of sEH expression is estrogen-dependent and is mediated by ERs. If so, whether the regulation is driven by DNA methylation and what transcription factors are involved?

Estrogen Mediates Methylation of the Ephx2 Promoter. Exposure of male vessels to exogenous estrogen significantly decreased Ephx2 mRNA (Fig. 1C) to the level induced by endogenous estrogens in females (Fig. 1A), indicating that the nature of female-specific down-regulation of sEH by female hormones, we designed the studies aimed to answer the questions as to whether the female-specific phenotype of sEH expression is estrogen-dependent and is mediated by ERs. If so, whether the regulation is driven by DNA methylation and what transcription factors are involved?

Estrogen Mediates Methylation of the Ephx2 Promoter. Exposure of male vessels to exogenous estrogen significantly decreased Ephx2 mRNA (Fig. 1C) to the level induced by endogenous estrogens in females (Fig. 1A), indicating that the nature of female-specific down-regulation of sEH by female hormones, we designed the studies aimed to answer the questions as to whether the female-specific phenotype of sEH expression is estrogen-dependent and is mediated by ERs. If so, whether the regulation is driven by DNA methylation and what transcription factors are involved?

Estrogen Mediates Methylation of the Ephx2 Promoter. Exposure of male vessels to exogenous estrogen significantly decreased Ephx2 mRNA (Fig. 1C) to the level induced by endogenous estrogens in females (Fig. 1A), indicating that the nature of female-specific down-regulation of sEH by female hormones, we designed the studies aimed to answer the questions as to whether the female-specific phenotype of sEH expression is estrogen-dependent and is mediated by ERs. If so, whether the regulation is driven by DNA methylation and what transcription factors are involved?

Estrogen Mediates Methylation of the Ephx2 Promoter. Exposure of male vessels to exogenous estrogen significantly decreased Ephx2 mRNA (Fig. 1C) to the level induced by endogenous estrogens in females (Fig. 1A), indicating that the nature of female-specific down-regulation of sEH by female hormones, we designed the studies aimed to answer the questions as to whether the female-specific phenotype of sEH expression is estrogen-dependent and is mediated by ERs. If so, whether the regulation is driven by DNA methylation and what transcription factors are involved?

Estrogen Mediates Methylation of the Ephx2 Promoter. Exposure of male vessels to exogenous estrogen significantly decreased Ephx2 mRNA (Fig. 1C) to the level induced by endogenous estrogens in females (Fig. 1A), indicating that the nature of female-specific down-regulation of sEH by female hormones, we designed the studies aimed to answer the questions as to whether the female-specific phenotype of sEH expression is estrogen-dependent and is mediated by ERs. If so, whether the regulation is driven by DNA methylation and what transcription factors are involved?

Estrogen Mediates Methylation of the Ephx2 Promoter. Exposure of male vessels to exogenous estrogen significantly decreased Ephx2 mRNA (Fig. 1C) to the level induced by endogenous estrogens in females (Fig. 1A), indicating that the nature of female-specific down-regulation of sEH by female hormones, we designed the studies aimed to answer the questions as to whether the female-specific phenotype of sEH expression is estrogen-dependent and is mediated by ERs. If so, whether the regulation is driven by DNA methylation and what transcription factors are involved?
family of eukaryotic transcription factors (such as Jun and Fos, and so forth), which work as gene modulators. An up-regulation of the Ephx2 gene was reported to be mediated by an angioten-
sin II-dependent stimulation of c-jun binding to putative AP-1 (18). Furthermore, the cross-talk between ERs and AP-1 was demonstrated to be important in the etiology and progression of
certain cancers that are sensitive to ER blockers (29). Thus, it is
plausible to assume that estrogen/ER-dependent methylation of
the Ephx2 promoter, followed by preventative access of other AP-1
binding ligands, participates reciprocally in prohibiting the binding
activity. Moreover, accumulating evidence has confirmed interac-
tions between NF-κB and estrogen/ERs in affecting one another
(28), the reduction in NF-κB binding could be dependent on es-
trogen-induced (i) direct down-regulation of NF-κB gene and
(ii) methylation of NF-κB binding sites to compromise binding
affinities of NF-κB and other ligands.

In conclusion, the present study demonstrates an estrogen-
dependent epigenetic regulation of the Ephx2 gene via DNA
methylolation-direct and -indirect pathways, both of which converge
to form a highly interconnected network that regulates the Ephx2
gene expression through multiple TF-dependent signaling. Our
findings are of importance because of the beneficial effects of
having increased levels of vascular EETs via silencing of the Ephx2
gene. More intriguingly, identification of estrogen-induced physi-
ological down-regulation of sEH expression highlights a clinical
potential for using sEH inhibitors that share the same target with
estrogen, as substitutes at least in part, for estrogen-replacement
therapy. This is based on the fact that there is a weak correlation
between estrogen-replacement therapy and improvement of car-
diovascular function and, therefore, the America Heart Associa-
tion has made recommendation of avoiding estrogen-replacement
therapy as a possible means of preventing cardiovascular disease
in postmenopausal women (30), who may exist with an up-regulation
of sEH as a consequence of estrogen deficiency.

Materials and Methods
Animals and Vessels. Mesenteric arteries isolated from 12- to 15-wk-old male,
female, OV female, and OVE (31) were used. All protocols were approved by
the Institutional Animal Care and Use Committee of New York Medical Col-
lege and conformed to the guidelines of the National Institutes of Health
and the American Physiological Society for the use and care of laboratory animals.

Vessel and Cell Cultures. Isolated mouse vessels and the human cell line
HEK293T were used and incubated with or without 17β-estradiol (17β-E2, 10 nm) for 48 h.

qRT-PCR. The primers were designed in-house and synthesized by Fisher
Scientific customer services (Table S1).

BGS and MSP. The primers for MSP and BGS amplification are shown in
Table S1. Bisulfite modification was performed as described previously (32). The
BGS assay involved two PCR amplifications in the Ephx2 promoter region: the
proximate one from −217 to +57 bp with 21 CpG sites and the distal one
from −970 to −427 bp with 4 CpG sites. MSP-detected methylation was ex-
pression as the ratio of methylated/unmethylated CpG sites (CpG/TpG × 100).

Luciferase Activity Assay. Luciferase assay was assessed on human cells (293T)
(16) with or without 17β-E2 treatment.

ChIP Assay. ChIP PCR primers were shown in Table S1. ChIP assay was per-
formed based on the protocol of cross-linking ChIP (Abcam). Mouse vessels
from male and female, as well as human cells (293T) with or without 17β-
E2 treatment were used as a chromatin source.

Acknowledgments. This work was supported by Grants NIH HL070653
and HL129797, and also partially supported by National Institute on
Environmental Health Sciences Grant R01 ES02710 and the National Institute on
Environmental Health Sciences Superfund Research Program P42 ES04699.

epoxide hydrolase from human liver. Arch Biochem Biophys 305:197–201.
2. Grant DF, Storms DH, Hammock BD (1993) Molecular cloning and expression of mu-
5. EnayetAllah AE, et al. (2008) Opposite regulation of cholesterol levels by the phos-
phatase and hydroxase domains of soluble epoxide hydrolase. J Biol Chem 283:
36592–36598.
striction via reciprocal activations of epoxyeicosatrienoic acids and nitric oxide. Am J
Sex-different regulation of soluble epoxide hydrolase. Am J Physiol Lung Cell Mol
Physiol 309:L1478–L1486.
stress in soluble epoxide hydrolase-knockout mice. Am J Physiol Heart Circ Physiol
12. Qin J, et al. (2016) Sexually dimorphic adaptation of cardiac function: Roles of epox-
eicosatrienoic acid and peroxisome proliferator-activated receptors. Physiol Rep 4:12838.
15. Lister R, et al. (2009) Human DNA methylomes at base resolution show widespread
moter of soluble epoxide hydrolase silences its expression by an SP-1-dependent mechanism. Biochim Biophys Acta 1799:659–667.
distributions, catalytic and immunological reactivities of hepatic epoxide hydrolases
trogen as key player. Microcirculation 11:9–38.
21. Denis H, Ndioum MN, Fux F (2011) Regulation of mammalian DNA methyl-
22. Sarabi MM, Naghibalhossaini F (2015) Association of DNA methyltransferases ex-
pression with global and gene-specific DNA methylation in colorectal cancer cells. Cell
and ER/activating protein-1 signaling pathways. J Mol Endocrinol 41:263–275, and
–/– gene and peroxisome proliferator-activated receptors.
25. Harris TR, Hammock BD (2013) Soluble epoxide hydrolase: Gene structure, expression
signal transduction pathways and inhibits breast cancer growth. Oncogene 21:
7680–7689.
expression and activity in breast cancer through multiple mechanisms. Mol Cell
Endocrinol 418:235–239.
29. Babu RL, et al. (2013) Effect of estrogen and tamoxifen on the expression pattern of
AP-1 factors in MCF-7 cells: Role of c-Jun, c-Fos, and Fra-1 in cell cycle regulation. Mol
mechanism that may increase the risk for cardiovascular disease in women. Steroids 75:
788–793.
32. Li Y, Tollefsbol TO (2010) DNA methylation detection: Bisulfite genomic sequencing