The Prevalence and Volumetry of Pituitary Cysts in Children with Growth Hormone Deficiency and Idiopathic Short Stature

Nicholas Krasnow
New York Medical College

Bradley Pogostin

James Haigney
New York Medical College

Brittany Groh
New York Medical College

Winston Weiler

See next page for additional authors

Follow this and additional works at: https://touroscholar.touro.edu/nymc_fac_pubs

Part of the *Medicine and Health Sciences Commons*

Recommended Citation

This Article is brought to you for free and open access by the Faculty at Touro Scholar. It has been accepted for inclusion in NYMC Faculty Publications by an authorized administrator of Touro Scholar. For more information, please contact touro.scholar@touro.edu.
Authors
Nicholas Krasnow, Bradley Pogostin, James Haigney, Brittany Groh, Winston Weiler, Michael Tenner, Marion Kessler, Michael Frey, and Richard A. Noto

This article is available at Touro Scholar: https://touroscholar.touro.edu/nymc_fac_pubs/1383
Nicholas Krasnow, Bradley Pogostin, James Haigney, Brittany Groh, Winston Weiler, Michael Tenner, Marion Kessler, Michael Frey and Richard A. Noto*

The prevalence and volumetry of pituitary cysts in children with growth hormone deficiency and idiopathic short stature

https://doi.org/10.1515/jpem-2017-0437
Received January 5, 2018; accepted September 25, 2018; previously published online October 25, 2018

Abstract

Background: Pituitary cysts have been speculated to cause endocrinopathies. We sought to describe the prevalence and volumetry of pituitary cysts in patients with growth hormone deficiency (GHD) and idiopathic short stature (ISS).

Methods: Six hundred and eighteen children evaluated for growth failure at the Division of Pediatric Endocrinology at New York Medical College between the years 2002 and 2012, who underwent GH stimulation testing and had a brain magnetic resonance imaging (MRI) prior to initiating GH treatment were randomly selected to be a part of this study. High resolution MRI was used to evaluate the pituitary gland for size and the presence of a cyst. Cyst prevalence, cyst volume and percentage of the gland occupied by the cyst (POGO) were documented.

Results: Fifty-six patients had a cyst, giving an overall prevalence of 9.1%. The prevalence of cysts in GHD patients compared to ISS patients was not significant (13.5% vs. 5.7%, p = 0.46). Mean cyst volume was greater in GHD patients than ISS patients (62.0 mm³ vs. 29.4 mm³, p = 0.01). POGO for GHD patients was significantly greater (p = 0.003) than for ISS patients (15.3% ± 12.8 vs. 7.1% ± 8.0). Observers were blinded to patient groups.

Conclusions: GHD patients had a significantly greater volume and POGO compared to ISS patients. This raises the question of whether cysts are implicated in the pathology of growth failure.

Keywords: endocrinopathy; growth disorders; growth hormone deficiency; growth hormone stimulation test; hypopituitarism; magnetic resonance imaging; pituitary; pituitary disease; pituitary volume; short stature.

Introduction

High resolution magnetic resonance imaging (MRI) evaluation of the pituitary gland has become essential in the assessment of the growth hormone deficient (GHD) child [1–3]. This new MRI technique allows for greater detailed observations to be made [4–6]. As a result, the endocrinologist may discover new and more frequent radiographic findings, including pituitary cysts [7–9]. We have previously shown a 14.6% prevalence of pituitary cysts in pediatric patients [Abstract: Incidence and volumetry of pituitary cysts in normal children]. One could easily speculate that compression of the pituitary by cysts may cause dysfunction in secretion in the somatotrophs and other cells of the pituitary gland [10–12]. This study sought to compare the prevalence and volumetry of pituitary cysts between GHD and idiopathic short stature (ISS) children.

Subjects and methods

Subjects

All children evaluated for growth failure seen in the Division of Pediatric Endocrinology at New York Medical College from 2002 to 2012, who had a bone age demonstrating open growth plates and had high resolution MRI and GH stimulation testing performed were considered for this study. Growth failure was defined as having a height less than 2.0 standard deviations below the mean on the Centers for Disease Control (CDC) growth curve, a subnormal growth velocity for at least 6 months and/or a predicted adult height greater than 5.08 cm discrepant from the mid-parental height. A GH peak of less than or equal to 10 ng/mL on stimulation was defined as GHD. Those with
levels greater than 10 ng/mL were classified as ISS. The secretagogues utilized during the GH stimulation test were clonidine and levodopa. Clonidine was administered at 0.004 mg/kg by mouth with 0.05 or 0.1 mg tablet, and 7–10 mg/kg of levodopa was administered by mouth with 125, 250, 375, or 500 mg tablet. GH levels were measured at our in-house endocrine laboratory via the chemiluminescent assay technique [13]. Patients were separated into two groups. Group 1 was considered the prepubertal patients, as defined by an age ≤11 years. Group 2 was considered the pubertal patients, as defined by an age >11 years. Patients with Turner syndrome, SHOX gene mutation, Cushing’s syndrome, hypothyroidism, other anterior pituitary hormone deficiencies and malnutrition were excluded from this study. As this was a retrospective study of pre-existing data accumulated in our division, it was not necessary to obtain informed consent.

Magnetic resonance imaging (MRI)

MRI scans were taken on a Philips 1.5 Tesla MRI system (Koninklijke Philips N. V. Amsterdam, The Netherlands). Post-gadolinium contrast brain MRIs with special attention to the pituitary gland were reviewed for the presence of pituitary cysts. Image slices of 1–2 mm thickness were used for both sagittal and coronal images. Fluid-filled lesions were defined as cysts and were only distinguishable by size, and an identified mass was considered an adenoma and excluded from the study. Patients were referred for dynamic scanning when a lesion could not be classified otherwise. Pituitary and cyst length and height were measured using mid-sagittal images, while width was obtained using coronal images at the level of the pituitary stalk entrance into the gland. Pituitary volumes and cyst volumes were calculated using the ellipsoidal formula \((l \times w \times h)/2\). Percentage of the gland occupied by the cyst (POGO) was calculated with the formula \((\text{cyst volume/pituitary volume}) \times 100\). A cyst with a POGO less than 15% was defined as a small cyst, and a POGO greater than 15% was defined as a large cyst.

Statistical analysis

All statistical analyses were performed using IBM SPSS software (IBM Corp. Armonk, NY, USA). Continuous variables were compared using the two-tailed Student’s t-test and were presented as the mean ± standard deviation. Categorical variables were compared using the chi-squared \(\chi^2\) test. A p-value <0.05 was considered statistically significant.

Ethical approval

The research related to human use has complied with all the relevant national regulations, institutional policies and is in accordance with the tenets of the Helsinki Declaration. The Institutional Review Board of New York Medical College approved this cross-sectional retrospective study.

Results

Table 1 depicts the prevalence of cysts stratified by the demographics of sex and age groups. Table 2 compares cyst volume and POGO, separated by diagnosis and age groups. Table 3 compares cyst volume and POGO, stratified by sex and diagnosis. Table 4 displays the prevalence of large and small cysts by diagnosis.

Table 1: Demographics and prevalence of pituitary cysts.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>GHD</th>
<th>ISS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>≤11</td>
</tr>
<tr>
<td>Male</td>
<td>225</td>
<td>11</td>
<td>33</td>
</tr>
<tr>
<td>Female</td>
<td>233</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>% with cyst</td>
<td>9.1</td>
<td>9.9</td>
<td>7.5</td>
</tr>
<tr>
<td>Prevalence, %</td>
<td>11.5</td>
<td>11.9</td>
<td>10.7</td>
</tr>
<tr>
<td>Mean age (SD)</td>
<td>(3.4)</td>
<td>(3.5)</td>
<td>(3.2)</td>
</tr>
</tbody>
</table>

SD, standard deviation; GHD, growth hormone deficiency; ISS, idiopathic short stature.

Table 2: Cyst volume and POGO, separated by diagnosis and age group.

<table>
<thead>
<tr>
<th></th>
<th>GHD</th>
<th>ISS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤11</td>
<td>>11</td>
</tr>
<tr>
<td>n</td>
<td>56</td>
<td>36</td>
</tr>
<tr>
<td>Mean cyst volume (SD)</td>
<td>51.1 (±58.9)</td>
<td>62.0 (±67.2)</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Mean POGO (SD)</td>
<td>11.7% (±11.3)</td>
<td>15.3% (±12.8)</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.003</td>
<td>0.003</td>
</tr>
</tbody>
</table>

SD, standard deviation; POGO, percentage of the gland occupied by the cyst; GHD, growth hormone deficiency; ISS, idiopathic short stature.
and 85 were female (32%). Three hundred and fifty-two had ISS (57%), of which 212 were male (60%) and 140 were female (40%).

Prevalence

Of the 618 patients studied, 56 had cysts, resulting in an overall prevalence of 9.1% (Table 1). GHD patients were found to have a prevalence of 13.5% compared to 5.7% for ISS patients (p = 0.46). This difference was not significant. The prevalence between males and females of the entire cohort was not significant (9.9% and 7.5%, p = 0.79). When analyzed by age, 9.87% of prepubertal patients (group 1) showed pituitary cysts, while 8.57% of pubertal patients (group 2) demonstrated a cyst (p = 0.59, Table 1). The difference in prevalence between age groups was not significant.

Cyst volume

Cyst analysis showed a significant difference between cyst volume in GHD patients (mean 62.0 mm³ ± 67.2, median 48.9) vs. ISS patients (mean 29.4 mm³ ± 38.4, median 16.5) (p = 0.01). For males, the difference in cyst volume between GHD patients (mean 68.9 mm³ ± 74.9, median 53.7) and ISS patients (mean 29.5 mm³ ± 46.7, median 14.5) was significant (p = 0.03). Cyst volume was greater in GHD females (mean 41.3 mm³ ± 29.6, median 34.5) than in ISS females (mean 29.2 mm³ ± 24.1, median 19.9), but this difference was not significant (p = 0.27). The group 2 patients had a larger cyst volume (58.67 mm³ ± 71.29 mm³) than the group 1 patients (39.76 mm³ ± 31.08 mm³). This difference was not significant (p = 0.19, Table 2).

POGO

The mean POGO of the cyst for GHD patients was 15.3% ± 12.8 (median 13.5) and for ISS it was 7.1% ± 8.0 (median 4.8). The difference between these two groups was statistically significant (p = 0.003). For males, the difference in POGO between the GHD (mean 16.4% ± 14.3, median 13.5) and ISS (mean 6.7% ± 9.0, median 4.1) groups was significant (p = 0.009). For females, the difference in POGO between the GHD (mean 11.8% ± 5.6, median 10.9) and ISS (mean 7.8% ± 6.6, median 5.4) groups was not significant (p = 0.16). Mean POGO in group 1 patients was 13.08% ± 12.6 and mean POGO in group 2 patients was 10.77% ± 10.4. This difference was not significant (p = 0.46, Tables 2 and 3).

In patients who had a pituitary cyst, 66.1% had a small cyst. For GHD and ISS patients with a cyst, small cysts were found in 55.6% and 85%, respectively. This difference was significant (p = 0.04). Large cysts were found in 33.9% of all patients with a cyst. For GHD and ISS patients with a cyst, large cysts were found in 44.4% and 15%, respectively. There was a significant difference between the percentage of GHD patients and ISS patients with large cysts (p = 0.04, Table 4).

Discussion

To the best of our knowledge, the data presented here is the first study to assess cyst prevalence and volumetry in children with GHD and ISS. Pituitary cysts have been speculated to cause a variety of clinical findings, including anterior pituitary dysfunction, visual field defects, and headaches [11, 14–23]. This pathology may be caused by cyst compression of the adenohypophysis [10–12]. Because somatotrophs are the most abundant cell type of the pituitary

Table 3: Volumetry of pituitary cysts by sex and diagnosis.

<table>
<thead>
<tr>
<th></th>
<th>GHD male</th>
<th>ISS male</th>
<th>GHD female</th>
<th>ISS female</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>27</td>
<td>12</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Mean cyst volume (SD)</td>
<td>68.9 (±74.9)</td>
<td>29.5 (±66.7)</td>
<td>41.3 (±29.6)</td>
<td>29.2 (±24.1)</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.03</td>
<td>0.27</td>
<td>0.009</td>
<td>0.16</td>
</tr>
<tr>
<td>Mean POGO (SD)</td>
<td>16.4% (±14.3)</td>
<td>6.7% (±9.0)</td>
<td>11.8% (±5.6)</td>
<td>7.8% (±6.6)</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.03</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
</tbody>
</table>

SD, standard deviation; GHD, growth hormone deficiency; ISS; idiopathic short stature; POGO, percentage of the gland occupied by the cyst.

Table 4: Prevalence of large versus small pituitary cysts in the different patient diagnoses.

<table>
<thead>
<tr>
<th>Cyst patients</th>
<th>GHD</th>
<th>ISS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small cysts</td>
<td>66.1%</td>
<td>55.6%</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Large cysts</td>
<td>33.9%</td>
<td>44.4%</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

GHD, growth hormone deficiency; ISS; idiopathic short stature.
gland, they are the most likely to be affected by a cyst [10, 24, 25]. Given this relationship, one might hypothesize that children with poor growth may have a higher prevalence of cysts than the general pediatric population. However, in a recently completed study, we found a general pediatric population prevalence of cysts of 14.6%. This is greater than the 9.1% prevalence found in this study for short children. This tends to negate the hypothesis that cyst prevalence itself is related to poor growth and GHD. However, the difference in prevalence between our two studies is not comparable because higher resolution MRIs were utilized in the normal children study. Improved MRI technology may allow for more cysts of smaller size to be detected. The difference in cyst prevalence between GHD, ISS, and normal stature children warrants further investigation.

Cyst size may be a causative factor in cyst related pituitary dysfunction. We found the mean cyst volume and POGO of cysts in GHD children to be significantly larger than in ISS children, implicating larger cysts with increasing pituitary dysfunction. Furthermore, the volume and POGO of cysts in normal children [10] tended to be smaller than those of this study, with a mean volume and POGO of 17.28 mm³ and 4.87%, respectively, in comparison to GHD (62 mm³, 15.3%) and ISS (29.4 mm³, 7.1%) patients.

Although cyst volume was greater in pubertal patients than prepubertal patients (p = 0.19), the difference in POGO between age groups was not significant (p = 0.46). This is likely because the pituitary size increases significantly in adolescence [26, 27]. If the POGO does not change, that is potentially indicative of only an increase in pituitary size, not an increase of cyst impingement on the gland.

From this data, we speculate that small cysts may be of a physiologic nature that come and go, but as cysts become larger, they may have a negative effect on pituitary secretion and cause problems with normal growth, with the larger cysts causing GHD.

It should be noted that the difference in POGO was not significant between GHD and ISS females. This is likely due to a lower number of females in our study. As our study was retrospective, we were unable to account for pubertal stage. We acknowledge that careful Tanner staging is essential to future research. Additional research looking at pituitary cysts and GH production in children may include genetic analysis.

Acknowledgments: We thank all the summer research students who assisted in retrieving and analyzing patient data. We also thank our research coordinator Jane Torres for her invaluable help and assistance.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission. Nicholas Krasnow analyzed and collated the data and drafted the initial manuscript. Bradley Pogostin, James Haigney, Brittany Groh and Winston Weiler analyzed and collated the data. Michael Tenner helped conceptualize and design the study, interpreted each MRI, and measured pituitary and cyst volumes. Marion Kessler analyzed and collated the data and revised the manuscript for final submission. Michael Frey ran the assays for the growth hormone levels. Richard Noto conceptualized and designed the study, analyzed and collated data, and revised the manuscript for final submission. The authors would like to thank the late Dr. Marion Kessler for her extensive work on the production of this investigation. Dr. Kessler was critical in the conception, design, and execution of this study, as well as in drafting the manuscript. She tragically passed away just before acceptance of this paper. She will be greatly missed.

Research funding: None declared.
Employment or leadership: None declared.
Honorarium: None declared.
Competing interests: None declared.

References