NYMC Faculty Publications

mTORC1/2 Inhibition Re-Sensitizes Platinum-Resistant Ovarian Cancer by Disrupting Selective Translation of DNA Damage and Survival mRNAs

Journal Title


First Page


Last Page


Document Type


Publication Date

September 2018


Obstetrics and Gynecology


Platinum resistance is a major cause of treatment failure and mortality in epithelial ovarian cancer. mTORC1/2 inhibitors, which impair mRNA translation, can re-sensitize resistant ovarian cancer cells to platinum chemotherapy but the mechanism remains poorly described. Using platinum-resistant OVCAR-3 cells treated with the selective mTORC1/2 inhibitor INK128/MLN128, we conducted genome-wide transcription and translation studies and analyzed the effect on cell proliferation, AKT-mTOR signaling and cell survival, to determine whether carboplatin resistance involves selective mRNA translational reprogramming, and whether it is sensitive to mTORC1/2 inhibition. Gene ontology and Ingenuity Pathway Analysis (IPA) were used to categorize gene expression changes into experimentally authenticated biochemical and molecular networks. We show that carboplatin resistance involves increased mTORC1/2 signaling, resulting in selective translation of mRNAs involved in DNA damage and repair responses (DDR), cell cycle and anti-apoptosis (survival) pathways. Re-sensitization of ovarian cancer cell killing by carboplatin required only modest mTORC1/2 inhibition, with downregulation of protein synthesis by only 20-30%. Genome-wide transcriptomic and translatomic analyses in OVCAR-3 cells revealed that the modest downregulation of global protein synthesis by dual mTORC1/2 inhibition is associated with greater selective inhibition of DDR, cell cycle and survival mRNA translation, which was confirmed in platinum-resistant SKOV-3 cells. These data suggest a clinical path to re-sensitize platinum resistant ovarian cancer to platinum chemotherapy through partial inhibition of mTORC1/2, resulting in selective translation inhibition of DDR and anti-apoptosis protective mRNAs.