NYMC Faculty Publications

Practical Bioinformatic DNA-Sequencing Pipeline for Detecting Oncogene Amplification and EGFRvIII Mutational Status in Clinical Glioblastoma Samples

Journal Title

The Journal of Molecular Diagnostics

First Page

514

Last Page

524

Document Type

Article

Publication Date

May 2019

Department

Pathology, Microbiology and Immunology

Abstract

Glioblastoma is a malignant brain tumor with dismal prognosis. Oncogenic mutations in glioblastoma frequently affect receptor tyrosine kinase pathway components that are challenging to quantify because of heterogeneous expression. EGFRvIII, a common oncogenic receptor tyrosine kinase mutant protein in glioblastoma, potentiates tumor malignancy and is an emerging tumor-specific immunotarget, underlining the need for its more accessible and quantitative detection. We used normalized next-generation sequencing data from 117 brain and 371 reference clinical tumor samples to detect focal gene amplifications across the commercial Ion AmpliSeq Cancer Hotspot Panel version 2 and infer EGFRvIII status based on relative coverage dropout of the gene's truncated region within EGFR. In glioblastomas (n = 45), amplification of EGFR [18 (40%)], PDGFRA [3 (7%)], KIT [2 (4%)], MET [1 (2%)], and AKT1 [1 (2%)] was detected. With respect to EGFR and PDGFRA amplification, there was near-complete agreement between next-generation sequencing and in situ hybridization. Consistent with previous reports, this method detected EGFRvIII exclusively in EGFR-amplified glioblastomas [8 (44%)], which was confirmed using long-range PCR. Our study offers a practical method for detecting oncogene amplifications and large intragenic mutations in a clinically implemented hotspot panel that can be quantified using z scores. The validated detection of EGFRvIII using DNA sequencing eliminates problems with transcript degradation, and the provided script facilitates efficient incorporation into a laboratory's bioinformatic pipeline.

Share

COinS