NYMC Faculty Publications

Title

Absence of Gut Microbial Colonization Attenuates the Sympathoadrenal Response to Hypoglycemic Stress in Mice: Implications for Human Neonates

Document Type

Article

Publication Date

March 2019

Department

Pediatrics

Abstract

BACKGROUND: Gut microbiota plays an important role during early development via bidirectional gut-brain signaling. Catecholamines provide a survival advantage allowing adaptation to common postnatal stressors. We aimed to explore the potential link between gut microbiota/gut-derived metabolites and sympathoadrenal stress responsivity. METHODS: The effect of insulin-induced hypoglycemia was compared in mice with (control, adapted control) and without microbiome (germ-free, GF). Counter-regulatory hormones were analyzed in urine and plasma. Adrenal gene expression levels were evaluated and correlated to cecal short chain fatty acids (SCFA) content. RESULTS: There was a significant association between absent microbiota/SCFA and epinephrine levels at baseline and after stress. Corticosterone (hypothalamic-pituitary-adrenal axis) and glucagon release (parasympathetic signaling) were similar in all groups. Hypoglycemia-induced c-Fos (marker of trans-synaptic neuronal activation) in both conditions. Delayed increases in adrenal tyrosine hydroxylase and neuropeptide Y messenger RNA were observed in GF mice. Transcriptome analysis provided insight into underlying mechanisms for attenuated epinephrine production and release. CONCLUSION: Lack of microbiome selectively impaired adrenal catecholamine responses to hypoglycemia. We speculate that absent/delayed acquisition of flora (e.g., after antibiotic exposure) may compromise sympathoadrenal stress responsivity. Conversely, controlled manipulation of the intestinal microflora may provide a novel therapeutic opportunity to improve survival and overall health in preterm neonates.

Share

COinS