NYMC Faculty Publications


Disruption of Cell-Cell Communication in Anaplastic Thyroid Cancer as an Immunotherapeutic Opportunity

Author Type(s)


First Page


Last Page


Document Type


Publication Date




Second Department

Pathology, Microbiology & Immunology


Thyroid cancer incidence is increasing at an alarming rate, almost tripling every decade. About 44,280 new cases of thyroid cancer (12,150 in men and 32,130 in women) are estimated to be diagnosed in 2021, with an estimated death toll of around 2200. Although most thyroid tumors are treatable and associated with a favorable outcome, anaplastic thyroid cancer (ATC) is extremely aggressive with a grim prognosis of 6-9 months post-diagnosis. A large contributing factor to this aggressive nature is that ATC is completely refractory to mainstream therapies. Analysis of the tumor microenvironment (TME) associated with ATC can relay insight to the pathological realm that encompasses tumors and aids in cancer progression and proliferation. The TME is defined as a complex niche that surrounds a tumor and involves a plethora of cellular components whose secretions can modulate the environment in order to favor tumor progression. The cellular heterogeneity of the TME contributes to its dynamic function due to the presence of both immune and nonimmune resident, infiltrating, and interacting cell types. Associated immune cells discussed in this chapter include macrophages, dendritic cells (DCs), natural killer (NK) cells, and tumor-infiltrating lymphocytes (TILs). Nonimmune cells also play a role in the establishment and proliferation of the TME, including neuroendocrine (NE) cells, adipocytes, endothelial cells (ECs), mesenchymal stem cells (MSCs), and fibroblasts. The dynamic nature of the TME contributes greatly to cancer progression.Recent work has found ATC tissues to be defined by a T cell-inflamed "hot" tumor immune microenvironment (TIME) as evidenced by presence of CD3+ and CD8+ T cells. These tumor types are amenable to immune checkpoint blockade (ICB) therapy. This therapeutic avenue, as of 2021, has remained unexplored in ATC. New studies should seek to explore the therapeutic feasibility of a combination therapy, through the use of a small molecule inhibitor with ICB in ATC. Screening of in vitro model systems representative of papillary, anaplastic, and follicular thyroid cancer explored the expression of 29 immune checkpoint molecules. There are higher expressions of HVEM, BTLA, and CD160 in ATC cell lines when compared to the other TC subtypes. The expression level of HVEM was more than 30-fold higher in ATC compared to the others, on average. HVEM is a member of tumor necrosis factor (TNF) receptor superfamily, which acts as a bidirectional switch through interaction with BTLA, CD160, and LIGHT, in a cis or trans manner. Given the T cell-inflamed hot TIME in ATC, expression of HVEM on tumor cells was suggestive of a possibility for complex crosstalk of HVEM with inflammatory cytokines. Altogether, there is emerging evidence of a T cell-inflamed TIME in ATC along with the expression of immune checkpoint proteins HVEM, BTLA, and CD160 in ATC. This can open doors for combination therapies using small molecule inhibitors targeting downstream effectors of MAPK pathway and antagonistic antibodies targeting the HVEM/BTLA axis as a potentially viable therapeutic avenue for ATC patients. With this being stated, the development of adaptive resistance to targeted therapies is inevitable; therefore, using a combination therapy that targets the TIME can serve as a preemptive tactic against the characteristic therapeutic resistance that is seen in ATC. The dynamic nature of the TME, including the immune cells, nonimmune cells, and acellular components, can serve as viable targets for combination therapy in ATC. Understanding the complex interactions of these associated cells and the paradigm in which their secretions and components can serve as immunomodulators are critical points of understanding when trying to develop therapeutics specifically tailored for the anaplastic thyroid carcinoma microenvironment.