NYMC Faculty Publications
Melatonin Protects Mouse Spermatogonial Stem Cells against Hexavalent Chromium-Induced Apoptosis and Epigenetic Histone Modification
DOI
10.1016/j.taap.2017.12.017
Journal Title
Toxicology and Applied Pharmacology
First Page
30
Last Page
38
Document Type
Article
Publication Date
February 2018
Department
Pathology, Microbiology and Immunology
Abstract
Given the potential biological functions of spermatogonial stem cells (SSCs) in spermatogenesis and in delivering parental genetic information to the next generation, how these cells respond to environmental toxins and carcinogens should be investigated. We examined the toxic effect of hexavalent chromium (Cr(VI)) on global histone modifications and apoptotic signaling pathways in SSCs. We determined the effect of melatonin, one of the most powerful endogenous free radical scavengers and wide-spectrum antioxidants, in protecting SSCs from Cr(VI)-induced apoptosis and global histone modification by Western blot analysis. In addition, we examined the in vivo effect of melatonin on Cr(VI)-induced histological changes of seminiferous tubules in mouse testes. We also evaluated the fertility of male mice by monitoring litter size following intraperitoneal injection of these chemicals. Our study demonstrated the Cr(VI)-induced global increases in H3K9me3 and H3K27me3 and activated the apoptotic signaling pathway. Pretreatment of SSCs with melatonin alleviated Cr(VI)-induced apoptosis and the global increase of H3K9me3. Exposure to melatonin also attenuated the Cr(VI)-induced increase of the abundance of histone methyltransferase ESET. Furthermore, exogenous administration of melatonin protected mice against Cr(VI)-induced changes in testicular histology and germ cell apoptosis, which helped maintain normal spermatogenesis and male fertility. Our study revealed a potential new therapeutic approach for male reproductive injury caused by Cr(VI).
Recommended Citation
Lv, Y., Zhang, P., Guo, J., Zhu, Z., Li, X., Xu, D., & Zeng, W. (2018). Melatonin Protects Mouse Spermatogonial Stem Cells against Hexavalent Chromium-Induced Apoptosis and Epigenetic Histone Modification. Toxicology and Applied Pharmacology, 340, 30-38. https://doi.org/10.1016/j.taap.2017.12.017