NYMC Faculty Publications

Epileptic Spasms in Infancy: Transferring Rat Prenatal Betamethasone-Postnatal NMDA Model to Mice

Author Type(s)

Faculty

DOI

10.1016/j.neulet.2023.137431

Journal Title

Neuroscience Letters

First Page

137431

Document Type

Article

Publication Date

9-14-2023

Department

Cell Biology and Anatomy

Abstract

Epileptic spasms during infancy represent a devastating and refractory epilepsy syndrome. To advance studies on mechanisms and treatment using available mouse mutant models, we transferred our validated rat model of epileptic spasms to mice. Initially, we determined sensitivity of C57BL/6J mice to various doses (12-20 mg/kg) of NMDA on postnatal day 11 (P11) and P15. We primed mice with different doses of betamethasone (0.4-2.0 mg/kg) prenatally on gestational day (G)14 or G12 and tested spasms on P11. We also tested 2 different ACTH treatment paradigms (0.3 or 1.0 mg/kg) in prenatally primed as well as naïve mice. Data show that spasms in P11 mice, can be induced with the highest yield after 12 mg/kg dose of NMDA. Prenatal priming on G14 did not modify response to NMDA or sensitize spasms to ACTH. The betamethasone priming on G12 resulted in an increase in the number of NMDA-triggered spasms. Data indicate that the model transfer from rats to mice is non-linear and differences in prenatal brain development, metabolic rates, as well as sensitivity to convulsant drugs have to be considered.

Share

COinS