NYMC Faculty Publications

Photo-Initiated Enhanced Antibacterial Therapy Using a Non-Covalent Functionalized Graphene Oxide Nanoplatform

Author Type(s)

Faculty

DOI

10.1039/d1dt00642h

Journal Title

Dalton Transactions

First Page

8404

Last Page

8412

Document Type

Article

Publication Date

6-22-2021

Department

Pathology, Microbiology and Immunology

Abstract

This study describes a novel antibacterial phototherapeutic platform for highly efficient healing of bacteria-infected wounds. It is based on the photodynamic and physical actions of a zinc tetraaminophthalocyanine-modified graphene oxide nanocomposite produced via non-covalent functionalization. The nanocomposite is positively charged and can easily capture negatively charged bacteria via electrostatic interactions. The antibacterial action is two-fold: (1) reactive oxygen species are produced by the phthalocyanine photosensitizer after short-term exposure to 680 nm light and (2) the graphene oxide can physically cut bacterial cell membranes. These enhanced activities can kill Gram-positive and Gram-negative bacteria at very low dosages. An ultrastructural examination indicates that this nanocomposite causes enormous damage to bacterial morphology and leakage of intracellular substances that lead to bacterial death. A rat wound model is used to demonstrate that the proposed phototherapeutic platform has low cytotoxicity and can promote rapid healing in bacteria-infected wounds. These results suggest that the integration of different antibacterial methods into a single nanotherapeutic platform is a promising strategy for anti-infective treatment.

Share

COinS