NYMC Faculty Publications
Non-Genomic STAT5-Dependent Effects at the Endoplasmic Reticulum and Golgi Apparatus and STAT6-GFP in Mitochondria.
Author Type(s)
Faculty
DOI
10.4161/jkst.24860
Journal Title
Jak-Stat
First Page
24860
Last Page
24860
Document Type
Article
Publication Date
10-1-2013
Department
Cell Biology and Anatomy
Abstract
STAT protein species are well-known as transcription factors that regulate nuclear gene expression. Recent novel lines of research suggest new non-genomic functions of STAT5A/B and STAT6. It was discovered in human pulmonary arterial endothelial cells that STAT5A, including STAT5A-GFP, constitutively associated with the Golgi apparatus, and both STAT5A and B with the endoplasmic reticulum. Acute siRNA-mediated knockdown of STAT5A/B led to the rapid development of a dramatic cystic change in the endoplasmic reticulum (ER) characterized by deposition of the ER structural protein reticulon-4 (RTN4; also called Nogo-B) and the ER-resident GTPase atlastin-3 (ATL3) along cyst membranes and cyst-zone boundaries, accompanied by Golgi fragmentation. Functional consequences included reduced anterograde trafficking, an ER stress response (increased GRP78/BiP) and eventual mitochondrial fragmentation. This phenotype was "non-genomic" in that it was elicited in enucleated cytoplasts. In cross-immunopanning assays STAT5A and B species associated with ATL3, and the ER-lumen spacer CLIMP63 (also called cytoskeleton-associated protein 4, CKAP4) but not RTN4. From a disease significance perspective we posit that STAT5, which is known to be affected by estradiol-17β and prolactin, represents the gender-sensitive determinant in the pathogenesis of idiopathic pulmonary hypertension (IPAH), a disease which includes ER/Golgi dysfunctions but with a 2- to 4-fold higher prevalence in postpubertal women. A separate line of recent research produced evidence for the association of STAT6-GFP, but not STAT3-GFP, STAT3-DsRed, or STAT3-Flag, with mitochondria in live-cell, immunofluorescence, and immunoelectron microscopy. An N-terminal truncation of STAT6-GFP (1-459), which lacked the SH2 domain and Tyr-phosphorylation site, constitutively associated with mitochondria. Thus, the emergent new of biology STAT proteins includes non-genomic roles-structurally and functionally-in the three closely related membrane organelles consisting of the endoplasmic reticulum, Golgi apparatus, and mitochondria.
Recommended Citation
Sehgal, P. B. (2013). Non-Genomic STAT5-Dependent Effects at the Endoplasmic Reticulum and Golgi Apparatus and STAT6-GFP in Mitochondria.. Jak-Stat, 2 (4), 24860-24860. https://doi.org/10.4161/jkst.24860