NYMC Faculty Publications
Berberine Suppresses Gero-Conversion From Cell Cycle Arrest to Senescence
Author Type(s)
Faculty
DOI
10.18632/aging.100593
Journal Title
Aging
First Page
623
Last Page
636
Document Type
Article
Publication Date
8-1-2013
Department
Pathology, Microbiology and Immunology
Abstract
Berberine (BRB), a natural alkaloid, has a long history of medicinal use in both Ayurvedic and old Chinese medicine. Recently, available as a dietary supplement, Berberine is reported to have application in treatment of variety diseases. Previously we observed that BRB inhibited mTOR/S6 signaling concurrently with reduction of the level of endogenous oxidants and constitutive DNA damage response. We currently tested whether Berberine can affect premature, stress-induced cellular senescence caused by mitoxantrone. The depth of senescence was quantitatively measured by morphometric parameters, senescence-associated β-galactosidase, induction of p21WAF1, replication stress (γH2AX expression), and mTOR signaling; the latter revealed by ribosomal S6 protein (rpS6) phosphorylation. All these markers of senescence were distinctly diminished, in a concentration-dependent manner, by Berberine. In view of the evidence that BRB localizes in mitochondria, inhibits respiratory electron chain and activates AMPK, the observed attenuation of the replication stress-induced cellular senescence most likely is mediated by AMPK that leads to inhibition of mTOR signaling. In support of this mechanism is the observation that rhodamine123, the cationic probe targeting mitochondrial electron chain, also suppressed rpS6 phosphorylation. The present findings reveal that: (a) in cells induced to senescence BRB exhibits gero-suppressive properties by means of mTOR/S6 inhibition; (b) in parallel, BRB reduces the level of constitutive DNA damage response, previously shown to report oxidative DNA damage by endogenous ROS; (c) there appears to a causal linkage between the (a) and (b) activities; (d) the in vitro model of premature stress-induced senescence can be used to assess effectiveness of potential gero-suppressive agents targeting mTOR/S6 and ROS signaling; (e) since most of the reported beneficial effects of BRB are in age-relate diseases, it is likely that gero-suppression is the primary activity of this traditional medicine.
Recommended Citation
Zhao, H., Halicka, D., Li, J., & Darzynkiewicz, Z. (2013). Berberine Suppresses Gero-Conversion From Cell Cycle Arrest to Senescence. Aging, 5 (8), 623-636. https://doi.org/10.18632/aging.100593