NYMC Faculty Publications

Single-Center Experience of Extended Brain-Death Donor Heart Preservation With the Organ Care System

Author Type(s)

Resident/Fellow, Faculty

DOI

10.1111/aor.14855

Journal Title

Artificial Organs

First Page

119

Last Page

128

Document Type

Article

Publication Date

1-1-2025

Department

Medicine

Second Department

Surgery

Keywords

heart failure, heart transplant, normothermic perfusion, organ care system, organ recovery

Disciplines

Medicine and Health Sciences

Abstract

Background: The Organ Care System (OCS) (Transmedics, Andover, MA) reduces cold ischemic time of donor hearts by producing a normothermic beating state during ex vivo perfusion, enabling extended ex situ intervals, which potentially increases donor pool. We aimed to compare outcomes in utilization of OCS and conventional cold storage technique. Methods: Consecutive heart transplants following brain death at our institution between May 2022 and July 2023 were analyzed. Recipients were divided into those receiving hearts preserved with OCS [N = 15] and those with conventional cold storage (Control, N = 27), with OCS utilization when anticipated ischemic time was more than 4 h. Pre-transplant characteristics and transplant outcomes were compared. Results: OCS utilization allowed a significant increase in distance traveled for heart retrieval (OCS, 624 ± 269 vs. Control, 153 ± 128 miles, p < 0.001), with longer mean total preservation times (6.2 ± 1.1 vs 2.6 ± 0.6 h, p < 0.001). All but one patient displayed a general decrease or plateau in lactate throughout perfusion time by OCS. Both groups experienced similar rates of severe primary graft dysfunction (OCS, 6.7% [N = 1] vs. Control, 11.1% [N = 3], p = 0.63), with 100% in-hospital survival in the OCS group compared to 96.3% in the Control group (p = 0.34). Kaplan–Meier survival analysis showed that estimated one-year survival were comparable (OCS, 93.3 ± 6.4% vs. Control, 88.9 ± 6.0%, p = 0.61). Conclusion: With a mean preservation time of around 6 h and distance covered of over 600 miles, our results using OCS indicate a potential to safely increase the quantity and viability of accessible organs, thus broadening the donor pool without negatively affecting outcomes.

Share

COinS