NYMC Faculty Publications
Discrete Signaling Mechanisms of mTORC1 and mTORC2: Connected Yet Apart in Cellular and Molecular Aspects
DOI
10.1016/j.jbior.2016.12.001
Journal Title
Advances in Biological Regulation
First Page
39
Last Page
48
Document Type
Article
Publication Date
5-1-2017
Department
Neurosurgery
Abstract
Activation of PI3K/Akt/mTOR (mechanistic target of rapamycin) signaling cascade has been shown in tumorigenesis of numerous malignancies including glioblastoma (GB). This signaling cascade is frequently upregulated due to loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. mTORC1 regulates protein synthesis and cell growth through downstream molecules: 4E-BP1 (also called EIF4E-BP1) and S6K. Also, mTORC2 is responsive to growth factor signaling by phosphorylating the C-terminal hydrophobic motif of some AGC kinases like Akt and SGK. mTORC2 plays a crucial role in maintenance of normal and cancer cells through its association with ribosomes, and is involved in cellular metabolic regulation. Both complexes control each other as Akt regulates PRAS40 phosphorylation, which disinhibits mTORC1 activity, while S6K regulates Sin1 to modulate mTORC2 activity. Another significant component of mTORC2 is Sin1, which is crucial for mTORC2 complex formation and function. Allosteric inhibitors of mTOR, rapamycin and rapalogs, have essentially been ineffective in clinical trials of patients with GB due to their incomplete inhibition of mTORC1 or unexpected activation of mTOR via the loss of negative feedback loops. Novel ATP binding inhibitors of mTORC1 and mTORC2 suppress mTORC1 activity completely by total dephosphorylation of its downstream substrate pS6K(Ser235/236), while effectively suppressing mTORC2 activity, as demonstrated by complete dephosphorylation of pAKT(Ser473). Furthermore, proliferation and self-renewal of GB cancer stem cells are effectively targetable by these novel mTORC1 and mTORC2 inhibitors. Therefore, the effectiveness of inhibitors of mTOR complexes can be estimated by their ability to suppress both mTORC1 and 2 and their ability to impede both cell proliferation and migration.
Recommended Citation
Jhanwar-Uniyal, M., Amin, A., Cooper, J., Das, K., Schmidt, M., & Murali, R. (2017). Discrete Signaling Mechanisms of mTORC1 and mTORC2: Connected Yet Apart in Cellular and Molecular Aspects. Advances in Biological Regulation, 64, 39-48. https://doi.org/10.1016/j.jbior.2016.12.001