Discovery of Small-Molecule Antibiotics against a Unique tRNA-Mediated Regulation of Transcription in Gram-Positive Bacteria

Authors

Author Type(s)

Student

Document Type

Article

Publication Date

April 2019

DOI

10.1002/cmdc.201800744

Journal Title

ChemMedChem

Abstract

The emergence of multidrug-resistant bacteria necessitates the identification of unique targets of intervention and compounds that inhibit their function. Gram-positive bacteria use a well-conserved tRNA-responsive transcriptional regulatory element in mRNAs, known as the T-box, to regulate the transcription of multiple operons that control amino acid metabolism. T-box regulatory elements are found only in the 5'-untranslated region (UTR) of mRNAs of Gram-positive bacteria, not Gram-negative bacteria or the human host. Using the structure of the 5'UTR sequence of the Bacillus subtilis tyrosyl-tRNA synthetase mRNA T-box as a model, in silico docking of 305 000 small compounds initially yielded 700 as potential binders that could inhibit the binding of the tRNA ligand. A single family of compounds inhibited the growth of Gram-positive bacteria, but not Gram-negative bacteria, including drug-resistant clinical isolates at minimum inhibitory concentrations (MIC 16-64 mug mL(-1) ). Resistance developed at an extremely low mutational frequency (1.21x10(-10) ). At 4 mug mL(-1) , the parent compound PKZ18 significantly inhibited in vivo transcription of glycyl-tRNA synthetase mRNA. PKZ18 also inhibited in vivo translation of the S. aureus threonyl-tRNA synthetase protein. PKZ18 bound to the Specifier Loop in vitro (Kd approximately 24 mum). Its core chemistry necessary for antibacterial activity has been identified. These findings support the T-box regulatory mechanism as a new target for antibiotic discovery that may impede the emergence of resistance.

Share

COinS