A Mathematical Investigation on Tumor-Immune Dynamics: The Impact of Vaccines on the Immune Response
Document Type
Article
Publication Date
2017
Publication Title
Journal of Cancer Science & Therapy
DOI
10.4172/1948-5956.1000491
Abstract
Mathematical models analyzing tumor-immune interactions provide a framework by which to address specific scenarios in regard to tumor-immune dynamics. Important aspects of tumor-immune surveillance to consider is the elimination of tumor cells from a host’s cell-mediated immunity as well as the implications of vaccines derived from synthetic antigen. In present studies, our mathematical model examined the role of synthetic antigen to the strength of the immune system. The constructed model takes into account accepted knowledge of immune function as well as prior work done by de Pillis et al. All equations describing tumor-immune growth, antigen presentation, immune response, and interaction rates were numerically simulated with MATLAB. Here, our work shows that a robust immune response can be generated if the immune system recognizes epitopes that are between 8 to 11 amino acids long. We show through mathematical modeling of how synthetic tumor vaccines can be utilized to mitigate a developing cancer.
Recommended Citation
Quinonez, J., Dasu, N., & Qureshi, M. (2017). A Mathematical Investigation on Tumor-Immune Dynamics: The Impact of Vaccines on the Immune Response. Journal of Cancer Science & Therapy, 9 (10), 675-682. https://doi.org/10.4172/1948-5956.1000491
Publisher's Statement
Originally published in the Journal of Cancer Science & Therapy, 9(10), 675-682. Licensed under CC BY 4.0. The original material can be found here.