NYMC Faculty Publications

DOI

10.1126/scitranslmed.aal2717

Journal Title

Science Translational Medicine

First Page

eaal2717

Document Type

Article

Publication Date

8-1-2017

Department

Medicine

Abstract

Lyme disease, the most commonly reported vector-borne disease in the United States, results from infection with Borrelia burgdorferi. Early clinical diagnosis of this disease is largely based on the presence of an erythematous skin lesion for individuals in high-risk regions. This, however, can be confused with other illnesses including southern tick-associated rash illness (STARI), an illness that lacks a defined etiological agent or laboratory diagnostic test, and is coprevalent with Lyme disease in portions of the eastern United States. By applying an unbiased metabolomics approach with sera retrospectively obtained from well-characterized patients, we defined biochemical and diagnostic differences between early Lyme disease and STARI. Specifically, a metabolic biosignature consisting of 261 molecular features (MFs) revealed that altered N-acyl ethanolamine and primary fatty acid amide metabolism discriminated early Lyme disease from STARI. Development of classification models with the 261-MF biosignature and testing against validation samples differentiated early Lyme disease from STARI with an accuracy of 85 to 98%. These findings revealed metabolic dissimilarity between early Lyme disease and STARI, and provide a powerful and new approach to inform patient management by objectively distinguishing early Lyme disease from an illness with nearly identical symptoms.

Publisher's Statement

This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science Translational Medicine on volume 9 and August 16, 2017, DOI: 10.1126/scitranslmed.aal2717

Creative Commons License

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.

Share

COinS